cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A201371 Number of n X 4 0..1 arrays with rows and columns lexicographically nondecreasing read forwards, and nonincreasing read backwards.

Original entry on oeis.org

2, 5, 14, 36, 80, 157, 280, 464, 726, 1085, 1562, 2180, 2964, 3941, 5140, 6592, 8330, 10389, 12806, 15620, 18872, 22605, 26864, 31696, 37150, 43277, 50130, 57764, 66236, 75605, 85932, 97280, 109714, 123301, 138110, 154212, 171680, 190589, 211016
Offset: 1

Views

Author

R. H. Hardin, Nov 30 2011

Keywords

Comments

Column 4 of A201375.

Examples

			Some solutions for n=5:
..0..0..1..1....0..0..1..1....0..1..1..1....0..1..1..1....0..0..0..1
..0..0..1..1....0..0..1..1....1..0..1..1....0..1..1..1....0..0..0..1
..1..1..0..1....0..1..0..1....1..1..0..0....1..0..0..1....0..0..0..1
..1..1..1..0....0..1..1..0....1..1..0..0....1..1..1..0....0..0..1..0
..1..1..1..0....1..0..0..0....1..1..0..0....1..1..1..0....1..1..0..0
		

Crossrefs

Cf. A201375.

Formula

Empirical: a(n) = (1/12)*n^4 + (1/3)*n^3 - (13/12)*n^2 + (8/3)*n.
Conjectures from Colin Barker, May 22 2018: (Start)
G.f.: x*(2 - 5*x + 9*x^2 - 4*x^3) / (1 - x)^5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n>5.
(End)

A201372 Number of n X 5 0..1 arrays with rows and columns lexicographically nondecreasing read forwards, and nonincreasing read backwards.

Original entry on oeis.org

2, 6, 22, 80, 268, 786, 2016, 4608, 9582, 18446, 33330, 57136, 93704, 147994, 226284, 336384, 487866, 692310, 963566, 1318032, 1774948, 2356706, 3089176, 4002048, 5129190, 6509022, 8184906, 10205552, 12625440, 15505258, 18912356, 22921216
Offset: 1

Views

Author

R. H. Hardin, Nov 30 2011

Keywords

Comments

Column 5 of A201375.

Examples

			Some solutions for n=6:
..0..1..1..1..1....0..0..0..1..1....0..0..0..1..1....0..0..0..1..1
..0..1..1..1..1....0..0..1..0..1....0..0..1..0..1....0..0..0..1..1
..0..1..1..1..1....0..1..1..1..0....0..1..0..1..0....0..1..1..0..1
..1..0..1..1..1....1..0..1..0..0....0..1..1..0..0....0..1..1..1..0
..1..1..0..0..1....1..1..0..0..0....0..1..1..0..0....1..0..1..1..0
..1..1..1..1..0....1..1..0..0..0....1..0..0..0..0....1..1..0..0..0
		

Crossrefs

Cf. A201375.

Formula

Empirical: a(n) = (1/45)*n^6 - (1/60)*n^5 - (4/9)*n^4 + (11/4)*n^3 - (206/45)*n^2 + (64/15)*n.
Conjectures from Colin Barker, May 22 2018: (Start)
G.f.: 2*x*(1 - 4*x + 11*x^2 - 9*x^3 + 15*x^4 - 6*x^5) / (1 - x)^7.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>7.
(End)

A201373 Number of n X 6 0..1 arrays with rows and columns lexicographically nondecreasing read forwards, and nonincreasing read backwards.

Original entry on oeis.org

2, 7, 32, 157, 786, 3739, 15574, 55410, 170616, 465037, 1145954, 2597729, 5492076, 10947133, 20749996, 37660122, 65814022, 111254955, 182614908, 291980013, 455974718, 697104503, 1045401722, 1540424266, 2233662188, 3191413217
Offset: 1

Views

Author

R. H. Hardin, Nov 30 2011

Keywords

Comments

Column 6 of A201375.

Examples

			Some solutions for n=5:
..0..0..0..1..1..1....0..0..0..1..1..1....0..0..0..0..1..1....0..0..1..1..1..1
..1..1..1..0..1..1....1..1..1..0..1..1....0..1..1..1..0..1....0..0..1..1..1..1
..1..1..1..1..0..1....1..1..1..1..0..1....1..0..0..1..0..1....0..1..0..1..1..1
..1..1..1..1..1..0....1..1..1..1..0..1....1..0..0..1..1..0....1..0..0..1..1..1
..1..1..1..1..1..0....1..1..1..1..1..0....1..1..1..0..0..0....1..1..1..0..0..0
		

Crossrefs

Cf. A201375.

Formula

Empirical: a(n) = (1/453600)*n^10 + (1/2160)*n^9 + (227/60480)*n^8 - (73/1260)*n^7 + (1319/10800)*n^6 + (757/720)*n^5 - (881131/181440)*n^4 + (2207/540)*n^3 + (396407/25200)*n^2 - (6737/210)*n + 18.
Conjectures from Colin Barker, May 22 2018: (Start)
G.f.: x*(2 - 15*x + 65*x^2 - 140*x^3 + 324*x^4 - 166*x^5 + 20*x^6 - 349*x^7 + 391*x^8 - 142*x^9 + 18*x^10) / (1 - x)^11.
a(n) = 11*a(n-1) - 55*a(n-2) + 165*a(n-3) - 330*a(n-4) + 462*a(n-5) - 462*a(n-6) + 330*a(n-7) - 165*a(n-8) + 55*a(n-9) - 11*a(n-10) + a(n-11) for n>11.
(End)

A201374 Number of nX7 0..1 arrays with rows and columns lexicographically nondecreasing read forwards, and nonincreasing read backwards.

Original entry on oeis.org

2, 8, 44, 280, 2016, 15574, 115168, 728078, 3793342, 16517460, 61759798, 203474642, 603403128, 1638153030, 4126393250, 9747403504, 21778931370, 46349684784, 94496712184, 185448946836, 351735813872, 646956766742, 1157359269036
Offset: 1

Views

Author

R. H. Hardin Nov 30 2011

Keywords

Comments

Column 7 of A201375

Examples

			Some solutions for n=5
..0..0..0..0..1..1..1....0..1..1..1..1..1..1....0..1..1..1..1..1..1
..0..0..1..1..0..0..1....1..0..1..1..1..1..1....0..1..1..1..1..1..1
..0..0..1..1..0..1..0....1..1..0..0..0..0..1....1..0..0..1..1..1..1
..1..1..0..0..1..0..0....1..1..0..0..0..1..0....1..0..1..0..0..0..0
..1..1..1..1..0..0..0....1..1..1..1..1..0..0....1..1..0..0..0..0..0
		

Formula

Empirical: a(n) = (1/64864800)*n^14 + (1/831600)*n^13 + (1643/59875200)*n^12 - (247/1995840)*n^11 - (5611/1360800)*n^10 + (61807/1814400)*n^9 + (11951/604800)*n^8 - (31427/30240)*n^7 + (10739983/2721600)*n^6 - (9433741/1814400)*n^5 + (252826879/29937600)*n^4 - (52757143/997920)*n^3 + (1595598461/10810800)*n^2 - (462725/2772)*n + 68

A201370 Number of n X n 0..1 arrays with rows and columns lexicographically nondecreasing read forwards, and nonincreasing read backwards.

Original entry on oeis.org

2, 3, 8, 36, 268, 3739, 115168, 8866257, 1799674094, 976134459840
Offset: 1

Views

Author

R. H. Hardin Nov 30 2011

Keywords

Comments

Diagonal of A201375

Examples

			Some solutions for n=5
..0..1..1..1..1....0..0..0..0..1....0..1..1..1..1....0..0..1..1..1
..1..0..1..1..1....0..0..0..1..0....1..0..0..1..1....0..1..0..0..1
..1..1..0..0..1....0..1..1..0..0....1..0..0..1..1....0..1..1..1..0
..1..1..0..1..0....1..0..1..0..0....1..1..1..0..0....1..0..1..1..0
..1..1..1..0..0....1..1..0..0..0....1..1..1..0..0....1..1..0..0..0
		
Showing 1-5 of 5 results.