This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A201377 #47 May 11 2023 18:34:11 %S A201377 1,1,2,1,3,5,2,5,9,17,2,7,14,27,46,3,10,21,42,74,123,4,14,31,64,116, %T A201377 197,323,5,19,44,93,174,303,506,809,6,25,61,132,254,452,769,1251,1966, %U A201377 8,33,83,185,363,659,1141,1885,3006,4660 %N A201377 Triangle read by rows: T(n,k) (0 <= k <= n) is the number of partitions of (n,k) into a sum of distinct pairs. %C A201377 By analogy with ordinary partitions into distinct parts (A000009). The empty partition gives T(0,0)=1 by definition. A201376 and A054242 give partitions of pairs into sums of not necessarily distinct pairs. %C A201377 Parts (i,j) are "positive" in the sense that min {i,j} >= 0 and max {i,j} >0. The empty partition of (0,0) is counted as 1. %H A201377 Alois P. Heinz, <a href="/A201377/b201377.txt">Rows n = 0..80, flattened</a> %H A201377 Reinhard Zumkeller, <a href="/A054225/a054225_1.lhs.txt">Haskell programs for A054225, A054242, A201376, A201377</a> %F A201377 For g.f. see A054242. %e A201377 Partitions of (2,1) into distinct positive pairs, T(2,1) = 3: %e A201377 (2,1), %e A201377 (2,0) + (0,1), %e A201377 (1,1) + (1,0); %e A201377 Partitions of (2,2) into distinct positive pairs, T(2,2) = 5: %e A201377 (2,2), %e A201377 (2,1) + (0,1), %e A201377 (2,0) + (0,2), %e A201377 (1,2) + (1,0), %e A201377 (1,1) + (1,0) + (0,1). %e A201377 First ten rows of triangle: %e A201377 0: 1 %e A201377 1: 1 2 %e A201377 2: 1 3 5 %e A201377 3: 2 5 9 17 %e A201377 4: 2 7 14 27 46 %e A201377 5: 3 10 21 42 74 123 %e A201377 6: 4 14 31 64 116 197 323 %e A201377 7: 5 19 44 93 174 303 506 809 %e A201377 8: 6 25 61 132 254 452 769 1251 1966 %e A201377 9: 8 33 83 185 363 659 1141 1885 3006 4660 %t A201377 nmax = 10; %t A201377 f[x_, y_] := Product[1 + x^n y^k, {n, 0, nmax}, {k, 0, nmax}]/2; %t A201377 se = Series[f[x, y], {x, 0, nmax}, {y, 0, nmax}]; %t A201377 coes = CoefficientList[se, {x, y}]; %t A201377 t[n_ /; n >= 0, k_] /; 0 <= k <= n := coes[[n-k+1, k+1]]; %t A201377 T[n_, k_] := t[n+k, k]; %t A201377 Table[T[n, k], {n, 0, nmax}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Nov 08 2021 *) %o A201377 (Haskell) -- see link. %Y A201377 T(n,0) = A000009(n); %Y A201377 T(1,0) = A036469(0); T(n,1) = A036469(n) for n > 0. %Y A201377 See A054242 for another version. %Y A201377 Cf. A000009, A054225, A201376. %Y A201377 T(n,n) = A219554(n). Row sums give: A219557. - _Alois P. Heinz_, Nov 22 2012 %K A201377 nonn,tabl %O A201377 0,3 %A A201377 _Reinhard Zumkeller_, Nov 30 2011 %E A201377 Entry revised by _N. J. A. Sloane_, Nov 30 2011