cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A201380 Number of nX4 0..1 arrays with rows and columns lexicographically nondecreasing and the instance counts of every value within one of each other.

This page as a plain text file.
%I A201380 #7 Jul 22 2025 16:12:41
%S A201380 1,7,27,121,483,1751,5694,16870,46014,116842,278837,630353,1358517,
%T A201380 2806843,5584567,10741640,20039166,36362252,64333159,111214759,
%U A201380 188207532,312302096,508868575,815256003,1285706310,1998034336,3062559792
%N A201380 Number of nX4 0..1 arrays with rows and columns lexicographically nondecreasing and the instance counts of every value within one of each other.
%C A201380 Column 4 of A201384
%H A201380 R. H. Hardin, <a href="/A201380/b201380.txt">Table of n, a(n) for n = 1..210</a>
%F A201380 Empirical: a(n) = 4*a(n-1) +a(n-2) -20*a(n-3) +4*a(n-4) +52*a(n-5) +6*a(n-6) -112*a(n-7) -64*a(n-8) +196*a(n-9) +174*a(n-10) -228*a(n-11) -325*a(n-12) +148*a(n-13) +457*a(n-14) -457*a(n-16) -148*a(n-17) +325*a(n-18) +228*a(n-19) -174*a(n-20) -196*a(n-21) +64*a(n-22) +112*a(n-23) -6*a(n-24) -52*a(n-25) -4*a(n-26) +20*a(n-27) -a(n-28) -4*a(n-29) +a(n-30)
%e A201380 Some solutions for n=9
%e A201380 ..0..0..0..1....0..0..0..1....0..0..0..1....0..0..0..0....0..0..0..0
%e A201380 ..0..0..1..1....0..0..0..1....0..0..1..1....0..0..0..1....0..0..1..1
%e A201380 ..0..1..1..0....0..0..1..0....0..0..1..1....0..1..1..0....0..1..0..0
%e A201380 ..0..1..1..0....0..1..0..1....0..0..1..1....0..1..1..0....0..1..0..1
%e A201380 ..1..0..0..0....0..1..0..1....0..1..0..1....0..1..1..0....0..1..1..0
%e A201380 ..1..0..0..1....0..1..0..1....0..1..1..0....0..1..1..1....0..1..1..1
%e A201380 ..1..1..0..0....0..1..0..1....1..0..1..0....1..0..1..1....0..1..1..1
%e A201380 ..1..1..0..1....1..1..1..0....1..0..1..0....1..1..0..0....1..0..1..1
%e A201380 ..1..1..0..1....1..1..1..1....1..0..1..1....1..1..1..0....1..1..0..0
%K A201380 nonn
%O A201380 1,2
%A A201380 _R. H. Hardin_ Nov 30 2011