cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A201396 Decimal expansion of the number x satisfying x^2+x+2=e^x.

This page as a plain text file.
%I A201396 #10 Feb 07 2025 16:44:07
%S A201396 2,2,0,4,1,1,7,7,3,3,1,7,1,6,2,0,2,9,5,9,9,0,9,5,4,8,7,7,7,3,2,3,8,4,
%T A201396 9,5,3,5,8,6,5,9,8,9,3,9,9,3,0,0,9,7,9,4,2,1,1,7,4,4,7,7,4,9,2,0,2,1,
%U A201396 1,8,2,3,8,6,5,9,0,1,0,7,3,0,3,3,5,9,3,8,3,0,8,0,9,8,4,6,5,0,1
%N A201396 Decimal expansion of the number x satisfying x^2+x+2=e^x.
%C A201396 See A201741 for a guide to related sequences. The Mathematica program includes a graph.
%H A201396 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>.
%e A201396 2.2041177331716202959909548777323849535865...
%t A201396 a = 1; b = 1; c = 2;
%t A201396 f[x_] := a*x^2 + b*x + c; g[x_] := E^x
%t A201396 Plot[{f[x], g[x]}, {x, -1, 3}, {AxesOrigin -> {0, 0}}]
%t A201396 r = x /. FindRoot[f[x] == g[x], {x, 2.2, 2.3}, WorkingPrecision -> 110]
%t A201396 RealDigits[r]     (* A201396 *)
%Y A201396 Cf. A201741.
%K A201396 nonn,cons
%O A201396 1,1
%A A201396 _Clark Kimberling_, Dec 06 2011