This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A201397 #13 Jan 30 2025 15:31:52 %S A201397 1,2,9,5,4,5,9,6,4,6,4,1,5,4,7,8,7,6,8,6,2,9,9,1,3,2,7,0,7,1,8,6,4,1, %T A201397 5,8,9,7,6,7,2,7,4,8,2,7,0,6,8,7,1,3,1,6,1,6,0,5,1,8,1,4,3,0,2,1,7,4, %U A201397 9,5,1,2,6,5,9,9,3,0,9,5,5,9,7,8,6,7,4,3,9,4,7,1,9,8,8,4,7,9,9 %N A201397 Decimal expansion of x satisfying x^2 + 2 = sec(x) and 0 < x < Pi. %C A201397 For many choices of a and c, there are exactly two values of x satisfying a*x^2 + c = sec(x) and 0 < x < Pi. Guide to related sequences, with graphs included in Mathematica programs: %C A201397 a.... c.... x %C A201397 1.... 1.... A196816 %C A201397 1.... 2.... A201397 %C A201397 1.... 3.... A201398 %C A201397 1.... 4.... A201399 %C A201397 1.... 5.... A201400 %C A201397 1.... 6.... A201401 %C A201397 1.... 7.... A201402 %C A201397 1.... 8.... A201403 %C A201397 1.... 9.... A201404 %C A201397 1.... 10... A201405 %C A201397 2.... 0.... A201406, A201407 %C A201397 3.... 0.... A201408, A201409 %C A201397 4.... 0.... A201410, A201411 %C A201397 5.... 0.... A201412, A201413 %C A201397 6.... 0.... A201414, A201415 %C A201397 7.... 0.... A201416, A201417 %C A201397 8.... 0.... A201418, A201419 %C A201397 9.... 0.... A201420, A201421 %C A201397 10... 0.... A201422, A201423 %C A201397 3... -1.... A201515, A201516 %C A201397 4... -1.... A201517, A201518 %C A201397 5... -1.... A201519, A201520 %C A201397 6... -1.... A201521, A201522 %C A201397 7... -1.... A201523, A201524 %C A201397 8... -1.... A201525, A201526 %C A201397 9... -1.... A201527, A201528 %C A201397 10.. -1.... A201529, A201530 %C A201397 2.... 3.... A201531 %C A201397 3.... 2.... A200619 %C A201397 Suppose that f(x,u,v) is a function of three real variables and that g(u,v) is a function defined implicitly by f(g(u,v),u,v)=0. We call the graph of z=g(u,v) an implicit surface of f. %C A201397 For an example related to A201397, take f(x,u,v) = u*x^2 + v = sec(x) and g(u,v) = a nonzero solution x of f(x,u,v)=0. If there is more than one nonzero solution, care must be taken to ensure that the resulting function g(u,v) is single-valued and continuous. A portion of an implicit surface is plotted by Program 2 in the Mathematica section. %H A201397 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>. %e A201397 1.2954596464154787686299132707186415897672... %t A201397 (* Program 1: A201397 *) %t A201397 a = 1; c = 2; %t A201397 f[x_] := a*x^2 + c; g[x_] := Sec[x] %t A201397 Plot[{f[x], g[x]}, {x, 0, Pi}, {AxesOrigin -> {0, 0}}] %t A201397 r = x /. FindRoot[f[x] == g[x], {x, 1.2, 1.3}, WorkingPrecision -> 110] %t A201397 RealDigits[r] (* A201397 *) %t A201397 (* Program 2: implicit surface of u*x^2+v=sec(x) *) %t A201397 Remove["Global`*"]; %t A201397 f[{x_, u_, v_}] := u*x^2 + v - Sec[x]; %t A201397 t = Table[{u, v, x /. FindRoot[f[{x, u, v}] == 0, {x, .1, 1}]}, {v, 0, 1}, {u, 2 + v, 10}]; %t A201397 ListPlot3D[Flatten[t, 1]] (* for A201397 *) %Y A201397 Cf. A201280, A200614. %K A201397 nonn,cons %O A201397 1,2 %A A201397 _Clark Kimberling_, Dec 01 2011