cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A201404 Decimal expansion of x satisfying x^2 + 9 = sec(x) and 0 < x < Pi.

This page as a plain text file.
%I A201404 #10 Jan 30 2025 15:34:43
%S A201404 1,4,8,1,3,4,6,6,1,2,6,2,9,7,1,7,6,7,5,9,7,6,5,3,6,8,4,1,5,7,9,5,6,5,
%T A201404 2,3,0,3,0,3,3,0,0,0,1,8,1,5,5,5,1,0,5,2,7,4,8,9,3,4,5,5,0,6,7,0,9,9,
%U A201404 9,5,7,6,2,4,3,8,4,1,7,7,8,3,8,9,3,0,4,3,4,0,3,1,7,3,3,2,6,7,2
%N A201404 Decimal expansion of x satisfying x^2 + 9 = sec(x) and 0 < x < Pi.
%C A201404 See A201397 for a guide to related sequences. The Mathematica program includes a graph.
%H A201404 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>.
%e A201404 1.4813466126297176759765368415795652303033000...
%t A201404 a = 1; c = 9;
%t A201404 f[x_] := a*x^2 + c; g[x_] := Sec[x]
%t A201404 Plot[{f[x], g[x]}, {x, 0, Pi}, {AxesOrigin -> {0, 0}}]
%t A201404 r = x /. FindRoot[f[x] == g[x], {x, 1.4, 1.5}, WorkingPrecision -> 110]
%t A201404 RealDigits[r]    (* A201404 *)
%Y A201404 Cf. A201397.
%K A201404 nonn,cons
%O A201404 1,2
%A A201404 _Clark Kimberling_, Dec 01 2011