cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A201405 Decimal expansion of x satisfying x^2 + 10 = sec(x) and 0 < x < Pi.

This page as a plain text file.
%I A201405 #10 Jan 30 2025 15:34:46
%S A201405 1,4,8,8,8,4,9,2,8,9,1,6,4,2,2,2,1,0,6,3,3,0,9,9,6,1,5,8,9,4,1,3,3,4,
%T A201405 3,7,5,5,3,8,1,3,6,3,6,5,0,9,7,0,2,0,5,2,1,5,5,2,9,0,4,1,0,4,8,6,7,8,
%U A201405 8,3,4,7,3,1,4,6,5,2,1,6,9,2,1,8,2,4,4,3,0,4,5,1,4,2,8,1,5,3,1
%N A201405 Decimal expansion of x satisfying x^2 + 10 = sec(x) and 0 < x < Pi.
%C A201405 See A201397 for a guide to related sequences. The Mathematica program includes a graph.
%H A201405 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>.
%e A201405 1.48884928916422210633099615894133...
%t A201405 a = 1; c = 10;
%t A201405 f[x_] := a*x^2 + c; g[x_] := Sec[x]
%t A201405 Plot[{f[x], g[x]}, {x, 0, Pi}, {AxesOrigin -> {0, 0}}]
%t A201405 r = x /. FindRoot[f[x] == g[x], {x, 1.4, 1.5}, WorkingPrecision -> 110]
%t A201405 RealDigits[r]    (* A201405 *)
%Y A201405 Cf. A201397.
%K A201405 nonn,cons
%O A201405 1,2
%A A201405 _Clark Kimberling_, Dec 01 2011