This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A201409 #10 Jan 30 2025 15:36:09 %S A201409 1,3,9,9,8,6,4,1,1,9,4,4,6,0,6,4,0,6,7,2,2,9,6,3,9,5,0,5,1,8,3,6,1,0, %T A201409 3,7,3,9,4,1,7,8,5,0,3,3,6,2,5,3,2,6,3,4,4,2,0,4,1,4,9,8,8,7,0,4,9,5, %U A201409 8,0,2,7,1,7,3,5,1,0,6,0,0,3,3,5,7,9,7,0,2,0,5,7,8,1,6,5,9,1,9 %N A201409 Decimal expansion of greatest x satisfying 3*x^2 = sec(x) and 0 < x < Pi. %C A201409 See A201397 for a guide to related sequences. The Mathematica program includes a graph. %H A201409 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>. %e A201409 least: 0.6461374540628972972901679159101125226952859... %e A201409 greatest: 1.39986411944606406722963950518361037394178... %t A201409 a = 3; c = 0; %t A201409 f[x_] := a*x^2 + c; g[x_] := Sec[x] %t A201409 Plot[{f[x], g[x]}, {x, 0, Pi/2}, {AxesOrigin -> {0, 0}}] %t A201409 r = x /. FindRoot[f[x] == g[x], {x, .6, .7}, WorkingPrecision -> 110] %t A201409 RealDigits[r] (* A201408 *) %t A201409 r = x /. FindRoot[f[x] == g[x], {x, 1.3, 1.4}, WorkingPrecision -> 110] %t A201409 RealDigits[r] (* A201409 *) %Y A201409 Cf. A201397. %K A201409 nonn,cons %O A201409 1,2 %A A201409 _Clark Kimberling_, Dec 01 2011