This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A201412 #10 Jan 30 2025 15:36:23 %S A201412 4,7,4,1,2,7,6,9,0,4,2,0,7,7,5,4,1,5,9,3,4,7,4,8,9,3,8,5,6,9,5,5,1,5, %T A201412 3,8,4,3,4,8,7,2,9,2,8,5,7,5,9,9,9,6,5,6,9,8,3,4,8,5,2,3,4,5,7,3,5,4, %U A201412 6,4,1,8,0,4,0,1,6,8,9,7,3,3,5,6,1,0,0,2,8,4,3,3,3,8,1,2,4,9,6 %N A201412 Decimal expansion of least x satisfying 5*x^2 = sec(x) and 0 < x < Pi. %C A201412 See A201397 for a guide to related sequences. The Mathematica program includes a graph. %H A201412 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>. %e A201412 least: 0.474127690420775415934748938569551538434... %e A201412 greatest: 1.4792710652904107931042853415537602633... %t A201412 a = 5; c = 0; %t A201412 f[x_] := a*x^2 + c; g[x_] := Sec[x] %t A201412 Plot[{f[x], g[x]}, {x, 0, Pi/2}, {AxesOrigin -> {0, 0}}] %t A201412 r = x /. FindRoot[f[x] == g[x], {x, .4, .5}, WorkingPrecision -> 110] %t A201412 RealDigits[r] (* A201412 *) %t A201412 r = x /. FindRoot[f[x] == g[x], {x, 1.4, 1.5}, WorkingPrecision -> 110] %t A201412 RealDigits[r] (* A201413 *) %Y A201412 Cf. A201397. %K A201412 nonn,cons %O A201412 0,1 %A A201412 _Clark Kimberling_, Dec 01 2011