A201413 Decimal expansion of greatest x satisfying 5*x^2 = sec(x) and 0 < x < Pi.
1, 4, 7, 9, 2, 7, 1, 0, 6, 5, 2, 9, 0, 4, 1, 0, 7, 9, 3, 1, 0, 4, 2, 8, 5, 3, 4, 1, 5, 5, 3, 7, 6, 0, 2, 6, 3, 3, 4, 3, 0, 8, 8, 6, 0, 3, 8, 0, 1, 4, 0, 0, 2, 7, 0, 9, 5, 6, 1, 9, 9, 2, 7, 1, 9, 5, 9, 0, 7, 5, 2, 5, 0, 0, 9, 1, 6, 6, 2, 6, 7, 9, 0, 3, 1, 8, 7, 1, 0, 0, 1, 7, 8, 4, 7, 3, 9, 2, 1, 8, 7
Offset: 1
Examples
least: 0.474127690420775415934748938569551538434... greatest: 1.4792710652904107931042853415537602633...
Crossrefs
Cf. A201397.
Programs
-
Mathematica
a = 5; c = 0; f[x_] := a*x^2 + c; g[x_] := Sec[x] Plot[{f[x], g[x]}, {x, 0, Pi/2}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, .4, .5}, WorkingPrecision -> 110] RealDigits[r] (* A201412 *) r = x /. FindRoot[f[x] == g[x], {x, 1.4, 1.5}, WorkingPrecision -> 110] RealDigits[r] (* A201413 *)
Comments