This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A201414 #10 Jan 30 2025 15:37:12 %S A201414 4,2,8,0,0,8,9,5,0,1,0,0,4,1,0,9,7,0,0,2,7,3,9,3,4,7,7,6,9,0,6,9,1,8, %T A201414 0,6,5,9,8,8,9,2,9,5,9,2,8,9,4,0,5,9,6,1,9,0,8,4,8,8,6,2,3,6,8,0,3,1, %U A201414 4,0,1,3,7,6,6,8,3,2,6,6,7,1,4,7,2,0,8,4,8,5,8,1,4,7,9,9,9,8,5 %N A201414 Decimal expansion of least x satisfying 6*x^2 = sec(x) and 0 < x < Pi. %C A201414 See A201397 for a guide to related sequences. The Mathematica program includes a graph. %H A201414 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>. %e A201414 least: 0.42800895010041097002739347769069180659... %e A201414 greatest: 1.496285048607652953479229041712424469... %t A201414 a = 6; c = 0; %t A201414 f[x_] := a*x^2 + c; g[x_] := Sec[x] %t A201414 Plot[{f[x], g[x]}, {x, 0, Pi/2}, {AxesOrigin -> {0, 0}}] %t A201414 r = x /. FindRoot[f[x] == g[x], {x, .4, .5}, WorkingPrecision -> 110] %t A201414 RealDigits[r] (* A201414 *) %t A201414 r = x /. FindRoot[f[x] == g[x], {x, 1.4, 1.5}, WorkingPrecision -> 110] %t A201414 RealDigits[r] (* A201415 *) %Y A201414 Cf. A201397. %K A201414 nonn,cons %O A201414 0,1 %A A201414 _Clark Kimberling_, Dec 01 2011