This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A201415 #10 Nov 26 2024 21:07:43 %S A201415 1,4,9,6,2,8,5,0,4,8,6,0,7,6,5,2,9,5,3,4,7,9,2,2,9,0,4,1,7,1,2,4,2,4, %T A201415 4,6,9,7,5,1,2,6,6,2,6,7,9,8,7,7,1,8,2,6,4,4,9,4,1,4,8,6,8,8,7,0,5,6, %U A201415 1,9,9,3,2,4,9,0,6,9,7,4,6,1,6,1,7,7,7,6,8,9,8,5,8,6,6,4,9,0,8 %N A201415 Decimal expansion of greatest x satisfying 6*x^2 = sec(x) and 0 < x < Pi. %C A201415 See A201397 for a guide to related sequences. The Mathematica program includes a graph. %H A201415 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>. %e A201415 least: 0.42800895010041097002739347769069180659... %e A201415 greatest: 1.496285048607652953479229041712424469... %t A201415 a = 6; c = 0; %t A201415 f[x_] := a*x^2 + c; g[x_] := Sec[x] %t A201415 Plot[{f[x], g[x]}, {x, 0, Pi/2}, {AxesOrigin -> {0, 0}}] %t A201415 r = x /. FindRoot[f[x] == g[x], {x, .4, .5}, WorkingPrecision -> 110] %t A201415 RealDigits[r] (* A201414 *) %t A201415 r = x /. FindRoot[f[x] == g[x], {x, 1.4, 1.5}, WorkingPrecision -> 110] %t A201415 RealDigits[r] (* A201415 *) %o A201415 (PARI) solve(x=1,2, 6*x^2*cos(x)-1) \\ _Charles R Greathouse IV_, Nov 26 2024 %Y A201415 Cf. A201397. %K A201415 nonn,cons %O A201415 1,2 %A A201415 _Clark Kimberling_, Dec 01 2011