This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A201416 #10 Jan 30 2025 15:39:07 %S A201416 3,9,3,2,7,3,8,2,7,3,2,8,8,4,1,5,0,3,8,3,2,4,5,2,0,5,7,2,0,6,2,5,3,4, %T A201416 2,6,5,9,1,4,5,2,1,7,7,2,0,3,0,3,2,2,0,5,9,1,8,2,9,7,1,9,8,6,8,9,1,8, %U A201416 8,7,1,5,2,9,8,6,0,8,6,3,5,3,9,4,1,4,6,2,8,9,1,1,5,9,4,9,3,2,6 %N A201416 Decimal expansion of least x satisfying 7*x^2 = sec(x) and 0 < x < Pi. %C A201416 See A201397 for a guide to related sequences. The Mathematica program includes a graph. %H A201416 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>. %e A201416 least: 0.39327382732884150383245205720625342659... %e A201416 greatest: 1.507928795380098266567899994070991413... %t A201416 a = 7; c = 0; %t A201416 f[x_] := a*x^2 + c; g[x_] := Sec[x] %t A201416 Plot[{f[x], g[x]}, {x, 0, Pi/2}, {AxesOrigin -> {0, 0}}] %t A201416 r = x /. FindRoot[f[x] == g[x], {x, .3, .4}, WorkingPrecision -> 110] %t A201416 RealDigits[r] (* A201416 *) %t A201416 r = x /. FindRoot[f[x] == g[x], {x, 1.5, 1.6}, WorkingPrecision -> 110] %t A201416 RealDigits[r] (* A201417 *) %Y A201416 Cf. A201397. %K A201416 nonn,cons %O A201416 0,1 %A A201416 _Clark Kimberling_, Dec 01 2011