This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A201420 #10 Jan 30 2025 15:38:42 %S A201420 3,4,3,5,1,9,3,8,4,4,4,8,7,5,1,7,2,8,5,1,5,7,9,3,7,9,1,6,0,5,4,7,6,8, %T A201420 6,0,1,4,4,8,5,9,7,4,9,4,9,4,2,1,8,9,6,5,0,9,4,4,1,5,8,8,5,3,7,2,3,4, %U A201420 6,8,9,3,0,4,9,5,5,9,8,9,1,9,6,8,4,5,8,0,9,1,9,1,9,6,2,4,0,8,6 %N A201420 Decimal expansion of least x satisfying 9*x^2 = sec(x) and 0 < x < Pi. %C A201420 See A201397 for a guide to related sequences. The Mathematica program includes a graph. %H A201420 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>. %e A201420 least: 0.3435193844487517285157937916054768... %e A201420 greatest: 1.52286717667793005738690747334562... %t A201420 a = 9; c = 0; %t A201420 f[x_] := a*x^2 + c; g[x_] := Sec[x] %t A201420 Plot[{f[x], g[x]}, {x, 0, Pi/2}, {AxesOrigin -> {0, 0}}] %t A201420 r = x /. FindRoot[f[x] == g[x], {x, .3, .4}, WorkingPrecision -> 110] %t A201420 RealDigits[r] (* A201420 *) %t A201420 r = x /. FindRoot[f[x] == g[x], {x, 1.5, 1.6}, WorkingPrecision -> 110] %t A201420 RealDigits[r] (* A201421 *) %Y A201420 Cf. A201397. %K A201420 nonn,cons %O A201420 0,1 %A A201420 _Clark Kimberling_, Dec 02 2011