This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A201422 #10 Jan 30 2025 15:40:35 %S A201422 3,2,4,8,3,5,7,6,2,5,5,2,6,7,2,6,3,4,3,2,7,2,1,6,8,9,0,5,9,1,8,3,5,7, %T A201422 0,3,0,0,8,4,8,6,6,5,9,6,3,0,4,6,3,6,6,2,0,1,2,2,0,0,8,0,9,3,4,7,0,4, %U A201422 7,3,0,6,0,5,4,5,6,0,1,9,8,7,1,0,1,7,2,5,7,1,5,1,3,9,3,5,8,7,8 %N A201422 Decimal expansion of least x satisfying 10*x^2 = sec(x) and 0 < x < Pi. %C A201422 See A201397 for a guide to related sequences. The Mathematica program includes a graph. %H A201422 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>. %e A201422 least: 0.3248357625526726343272168905918357... %e A201422 greatest: 1.52794989469861441964924475246801... %t A201422 a = 10; c = 0; %t A201422 f[x_] := a*x^2 + c; g[x_] := Sec[x] %t A201422 Plot[{f[x], g[x]}, {x, 0, Pi/2}, {AxesOrigin -> {0, 0}}] %t A201422 r = x /. FindRoot[f[x] == g[x], {x, .3, .4}, WorkingPrecision -> 110] %t A201422 RealDigits[r] (* A201422 *) %t A201422 r = x /. FindRoot[f[x] == g[x], {x, 1.5, 1.6}, WorkingPrecision -> 110] %t A201422 RealDigits[r] (* A201423 *) %Y A201422 Cf. A201397. %K A201422 nonn,cons %O A201422 0,1 %A A201422 _Clark Kimberling_, Dec 02 2011