This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A201423 #12 Jan 30 2025 15:40:14 %S A201423 1,5,2,7,9,4,9,8,9,4,6,9,8,6,1,4,4,1,9,6,4,9,2,4,4,7,5,2,4,6,8,0,1,9, %T A201423 8,4,7,4,3,0,5,4,9,8,4,6,9,8,8,5,8,3,4,6,0,2,2,7,6,4,3,7,4,6,8,8,0,0, %U A201423 1,0,6,3,7,2,5,6,8,1,3,5,5,6,2,2,9,3,9,5,4,0,8,6,8,8,8,6,0,4,2,5 %N A201423 Decimal expansion of greatest x satisfying 10*x^2 = sec(x) and 0 < x < Pi. %C A201423 See A201397 for a guide to related sequences. The Mathematica program includes a graph. %H A201423 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>. %e A201423 least: 0.3248357625526726343272168905918357... %e A201423 greatest: 1.52794989469861441964924475246801... %t A201423 a = 10; c = 0; %t A201423 f[x_] := a*x^2 + c; g[x_] := Sec[x] %t A201423 Plot[{f[x], g[x]}, {x, 0, Pi/2}, {AxesOrigin -> {0, 0}}] %t A201423 r = x /. FindRoot[f[x] == g[x], {x, .3, .4}, WorkingPrecision -> 110] %t A201423 RealDigits[r] (* A201422 *) %t A201423 r = x /. FindRoot[f[x] == g[x], {x, 1.5, 1.6}, WorkingPrecision -> 110] %t A201423 RealDigits[r] (* A201423 *) %Y A201423 Cf. A201397. %K A201423 nonn,cons %O A201423 1,2 %A A201423 _Clark Kimberling_, Dec 02 2011