A201445 Number of n X 2 0..3 arrays with every row and column nondecreasing rightwards and downwards, and the number of instances of each value within one of each other.
6, 2, 21, 9, 56, 13, 110, 32, 198, 41, 315, 78, 480, 94, 684, 155, 950, 180, 1265, 271, 1656, 307, 2106, 434, 2646, 483, 3255, 652, 3968, 716, 4760, 933, 5670, 1014, 6669, 1285, 7800, 1385, 9030, 1716, 10406, 1837, 11891, 2234, 13536, 2378, 15300, 2847
Offset: 1
Keywords
Examples
Some solutions for n=10: ..0..0....0..0....0..1....0..1....0..2....0..0....0..0....0..0....0..1....0..0 ..0..1....0..1....0..1....0..1....0..2....0..1....0..1....0..0....0..1....0..1 ..0..2....0..1....0..2....0..2....0..2....0..1....0..2....0..1....0..1....0..2 ..0..2....0..2....0..2....0..2....0..2....0..1....0..2....1..1....0..2....0..2 ..1..2....1..2....0..2....0..2....0..2....1..1....1..2....1..1....0..2....1..2 ..1..2....1..2....1..2....1..3....1..3....2..2....1..3....2..2....1..2....1..2 ..1..2....1..2....1..2....1..3....1..3....2..3....1..3....2..3....1..3....1..3 ..1..3....2..3....1..3....1..3....1..3....2..3....1..3....2..3....2..3....1..3 ..3..3....3..3....3..3....2..3....1..3....2..3....2..3....2..3....2..3....2..3 ..3..3....3..3....3..3....2..3....1..3....3..3....2..3....3..3....3..3....3..3
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A201451.
Formula
Empirical: a(n) = a(n-2) +3*a(n-4) -3*a(n-6) -3*a(n-8) +3*a(n-10) +a(n-12) -a(n-14).
Subsequences for n modulo 4 = 1,2,3,0:
p=(n+3)/4: a(n) = 8*p^3 - 2*p^2
q=(n+2)/4: a(n) = (4/3)*q^3 + (1/2)*q^2 + (1/6)*q
r=(n+1)/4: a(n) = 8*r^3 + 10*r^2 + 3*r
s=(n+0)/4: a(n) = (4/3)*s^3 + (7/2)*s^2 + (19/6)*s + 1.
Empirical g.f.: x*(6 + 2*x + 15*x^2 + 7*x^3 + 17*x^4 - 2*x^5 + 9*x^6 - 2*x^7 + x^8 + 3*x^9 + x^11 - x^13) / ((1 - x)^4*(1 + x)^4*(1 + x^2)^3). - Colin Barker, May 23 2018
Comments