A201451 T(n,k)=Number of nXk 0..3 arrays with every row and column nondecreasing rightwards and downwards, and the number of instances of each value within one of each other.
4, 6, 6, 4, 2, 4, 1, 21, 21, 1, 4, 9, 52, 9, 4, 6, 56, 29, 29, 56, 6, 4, 13, 246, 112, 246, 13, 4, 1, 110, 701, 261, 261, 701, 110, 1, 4, 32, 844, 846, 4544, 846, 844, 32, 4, 6, 198, 426, 1720, 22324, 22324, 1720, 426, 198, 6, 4, 41, 2478, 4193, 45532, 16334, 45532, 4193
Offset: 1
Examples
Some solutions for n=10 k=3 ..0..0..0....0..0..0....0..0..1....0..0..1....0..0..0....0..1..1....0..0..1 ..0..1..1....0..0..1....0..0..2....0..0..1....0..0..0....0..1..1....0..0..2 ..0..1..2....0..1..1....0..0..2....0..0..2....0..1..1....0..1..1....0..1..2 ..0..1..2....0..1..1....0..1..2....0..1..2....1..1..2....0..1..2....0..1..2 ..0..1..2....1..1..2....1..1..3....0..1..2....1..2..3....0..2..2....0..1..3 ..1..1..3....2..2..2....1..1..3....1..2..2....1..2..3....0..2..2....1..2..3 ..1..2..3....2..2..3....1..1..3....1..3..3....1..2..3....0..3..3....1..2..3 ..2..2..3....2..2..3....2..2..3....1..3..3....1..2..3....2..3..3....1..2..3 ..2..2..3....3..3..3....2..2..3....2..3..3....2..3..3....2..3..3....1..3..3 ..3..3..3....3..3..3....2..3..3....2..3..3....2..3..3....2..3..3....2..3..3
Links
- R. H. Hardin, Table of n, a(n) for n = 1..312
Formula
T(n,1) = binomial(4,n modulo 4). For a 0..z array, T(n,1) = binomial(z+1, n modulo (z+1)).
Comments