This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A201453 #31 Aug 09 2025 11:23:38 %S A201453 1,1,-1,1,-1,2,1,-2,1,-8,1,-10,11,-4,8,1,-5,29,-5,8,-32,1,-7,7,-33,26, %T A201453 -8,6112,1,-28,602,-100,313,-112,512,-3712,1,-4,70,-1268,593,-1816, %U A201453 1936,-2944,362624,1,-15,38,-566,9681,-1481,31568,-960,2432,-71706112,1,-55,176,-1606,5401,-54499,290362,-58864,44736,-285568,3341113856 %N A201453 Triangle of numerators of dual coefficients of Faulhaber. %C A201453 Sum_{k=0..N-1} (k*(k + 1))^m = Sum_{i=0..m} F(m,i)*N^(2*m-2*i+1), m=0,1,2,... %C A201453 The coefficients F(m,i) are dual to Faulhaber coefficients, because they are obtained from the inverse expression Sum((k*(k + 1))^(m), k=0..N-1) to Faulhaber's formula from Sum((k)^(2*m-1), k=0..N-1) and there holds the identity F(m+i-1,i)=(-1)^i Fe(-m,i), where Fe(-m,i)=A093558(-m,i)/A093559(-m,i) is a Faulhaber coefficient for the sums of even powers of the first N-1 integers (for details see the reference 1, from p. 19). %H A201453 A. Dzhumadil'daev and D. Yeliussizov, <a href="http://cs.uwaterloo.ca/journals/JIS/VOL16/Yeliussizov/dzhuma6.html">Power sums of binomial coefficients</a>, Journal of Integer Sequences, 16 (2013), Article 13.1.6 %F A201453 a(m,k) = numerator(F(m,k)) with: %F A201453 1) recursion, F(x,0) = 1/(2*x+1) and 2*(m-k)*(2*m-2*k+1)*F(m,k)=2*m*(2*m-1)*F(m-1,k)+m*(m-1)*F(m-2,k-1); %F A201453 2) explicit formula F(m,k) = (1/(2*m-2*k+1))sum(binomial(m,2*k-i)*binomial(2*m-2*k+i,i) Bernoulli(i), i=0..2*k) %e A201453 Triangle begins: %e A201453 1; %e A201453 1, -1; %e A201453 1, -1, 2; %e A201453 1, -2, 1, -8; %e A201453 1, -10, 11, -4, 8; %e A201453 1, -5, 29, -5, 8, -32; %e A201453 1, -7, 7, -33, 26, -8, 6112; %e A201453 1, -28, 602, -100, 313, -112, 512, -3712; %e A201453 1, -4, 70, -1268, 593, -1816, 1936, -2944, 362624; %e A201453 1, -15, 38, -566, 9681, -1481, 31568, -960, 2432, -71706112; %e A201453 ... %t A201453 f[m_, k_] := (1/(2*m - 2*k + 1))* Sum[Binomial[m, 2*k - i]*Binomial[2*m - 2*k + i, i]*BernoulliB[i], {i, 0, 2 k}]; %t A201453 a[m_, k_] := f[m, k] // Numerator; %t A201453 Table[a[m, k], {m, 0, 10}, {k, 0, m}] // Flatten %o A201453 (Magma) [Numerator((1/(2*m-2*k+1))*&+[Binomial(m,2*k-i)*Binomial(2*m-2*k+i, i)*BernoulliNumber(i): i in [0..2*k]]): k in [0..m], m in [0..10]]; // _Bruno Berselli_, Jan 21 2013 %Y A201453 Cf. A093558, A093559, A201454 (denominators). %K A201453 sign,frac,tabl,easy %O A201453 0,6 %A A201453 _Damir Yeliussizov_, Jan 09 2013