A201502 Number of nX7 0..1 arrays with every row and column running average nondecreasing rightwards and downwards, and the number of instances of each value within one of each other.
2, 4, 20, 24, 98, 94, 338, 289, 936, 734, 2234, 1656, 4770, 3370, 9344, 6375, 17100, 11322, 29600, 19138, 48920, 30982, 77764, 48417, 119558, 73316, 178582, 108108, 260106, 155646, 370516, 219489, 517470, 303748, 710068, 413442, 959000, 554256
Offset: 1
Keywords
Examples
Some solutions for n=4 ..0..0..0..0..0..0..1....0..0..0..0..0..0..1....0..0..0..0..0..0..0 ..0..0..0..0..0..0..1....0..0..0..0..1..1..1....0..0..0..0..1..1..1 ..0..1..1..1..1..1..1....0..0..1..1..1..1..1....0..0..0..1..1..1..1 ..0..1..1..1..1..1..1....0..0..1..1..1..1..1....1..1..1..1..1..1..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Formula
Empirical: a(n) = a(n-1) +2*a(n-2) -3*a(n-3) +a(n-4) +2*a(n-5) -4*a(n-6) +2*a(n-7) +2*a(n-8) -4*a(n-9) +a(n-10) +3*a(n-11) -3*a(n-12) +a(n-14) -a(n-15) +2*a(n-16) -a(n-17) +a(n-19) -a(n-20) +a(n-22) -a(n-23) +a(n-25) -2*a(n-26) +a(n-27) -a(n-28) +3*a(n-30) -3*a(n-31) -a(n-32) +4*a(n-33) -2*a(n-34) -2*a(n-35) +4*a(n-36) -2*a(n-37) -a(n-38) +3*a(n-39) -2*a(n-40) -a(n-41) +a(n-42)
Even terms are A188185((n-4)/2)
Comments