cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A201499 Number of n X n 0..1 arrays with every row and column running average nondecreasing rightwards and downwards, and the number of instances of each value within one of each other.

Original entry on oeis.org

2, 2, 6, 8, 40, 58, 338, 526, 3334, 5448, 36168, 61108, 417920, 723354, 5054148, 8908546, 63260780, 113093022, 813360930, 1470597342, 10685501398, 19499227828, 142885700222, 262754984020, 1939096937920, 3589093760726, 26647143177214
Offset: 1

Views

Author

R. H. Hardin Dec 02 2011

Keywords

Comments

Diagonal of A201503

Examples

			Some solutions for n=4
..0..0..0..1....0..0..0..0....0..0..0..1....0..0..0..1....0..0..0..0
..0..0..0..1....0..0..1..1....0..0..1..1....0..0..0..1....0..0..0..1
..0..1..1..1....0..1..1..1....0..0..1..1....0..0..1..1....0..1..1..1
..0..1..1..1....0..1..1..1....0..1..1..1....1..1..1..1....1..1..1..1
		

A201500 Number of n X 3 0..1 arrays with every row and column running average nondecreasing rightwards and downwards, and the number of instances of each value within one of each other.

Original entry on oeis.org

2, 2, 6, 5, 12, 8, 20, 13, 30, 18, 42, 25, 56, 32, 72, 41, 90, 50, 110, 61, 132, 72, 156, 85, 182, 98, 210, 113, 240, 128, 272, 145, 306, 162, 342, 181, 380, 200, 420, 221, 462, 242, 506, 265, 552, 288, 600, 313, 650, 338, 702, 365, 756, 392, 812, 421, 870, 450, 930, 481
Offset: 1

Views

Author

R. H. Hardin, Dec 02 2011

Keywords

Comments

Column 3 of A201503.

Examples

			All solutions for n=4:
..0..0..1....0..0..0....0..0..0....0..0..0....0..0..1
..0..0..1....0..0..1....0..1..1....0..0..0....0..0..1
..0..0..1....0..1..1....0..1..1....1..1..1....0..1..1
..1..1..1....1..1..1....0..1..1....1..1..1....0..1..1
		

Crossrefs

Cf. A201503.

Formula

Empirical: a(n) = 2*a(n-2) -2*a(n-6) +a(n-8).
Odd terms are A002378((n+1)/2).
Even terms are A000982((n+2)/2).
Empirical g.f.: x*(2 + 2*x + 2*x^2 + x^3 - 2*x^5 + x^7) / ((1 - x)^3*(1 + x)^3*(1 + x^2)). - Colin Barker, May 23 2018

A201501 Number of n X 5 0..1 arrays with every row and column running average nondecreasing rightwards and downwards, and the number of instances of each value within one of each other.

Original entry on oeis.org

2, 3, 12, 12, 40, 32, 98, 73, 204, 141, 380, 252, 650, 414, 1042, 649, 1590, 967, 2330, 1394, 3302, 1944, 4550, 2649, 6122, 3523, 8070, 4604, 10450, 5910, 13320, 7483, 16744, 9343, 20790, 11538, 25528, 14090, 31032, 17053, 37382, 20451, 44660, 24342
Offset: 1

Views

Author

R. H. Hardin, Dec 02 2011

Keywords

Comments

Column 5 of A201503.

Examples

			Some solutions for n=4:
..0..0..0..0..0....0..0..0..0..0....0..0..0..0..0....0..0..0..1..1
..0..0..1..1..1....0..0..0..1..1....0..0..0..1..1....0..0..0..1..1
..0..0..1..1..1....0..1..1..1..1....0..0..1..1..1....0..0..1..1..1
..0..1..1..1..1....0..1..1..1..1....1..1..1..1..1....0..0..1..1..1
		

Crossrefs

Cf. A201503.

Formula

Empirical: a(n) = a(n-1) +2*a(n-2) -3*a(n-3) +a(n-4) +2*a(n-5) -4*a(n-6) +2*a(n-7) +2*a(n-8) -4*a(n-9) +4*a(n-11) -2*a(n-12) -2*a(n-13) +4*a(n-14) -2*a(n-15) -a(n-16) +3*a(n-17) -2*a(n-18) -a(n-19) +a(n-20).
Even terms are A188183((n-2)/2).
Empirical g.f.: x*(2 + x + 5*x^2 + 11*x^4 - 3*x^5 + 12*x^6 + 3*x^7 + 5*x^8 - x^9 + 12*x^10 - 3*x^11 - x^12 + 5*x^13 - 2*x^14 - x^15 + 3*x^16 - 2*x^17 - x^18 + x^19) / ((1 - x)^5*(1 + x)^5*(1 - x + x^2)*(1 + x^2)^2*(1 + x^4)). - Colin Barker, May 23 2018

A201502 Number of nX7 0..1 arrays with every row and column running average nondecreasing rightwards and downwards, and the number of instances of each value within one of each other.

Original entry on oeis.org

2, 4, 20, 24, 98, 94, 338, 289, 936, 734, 2234, 1656, 4770, 3370, 9344, 6375, 17100, 11322, 29600, 19138, 48920, 30982, 77764, 48417, 119558, 73316, 178582, 108108, 260106, 155646, 370516, 219489, 517470, 303748, 710068, 413442, 959000, 554256
Offset: 1

Views

Author

R. H. Hardin Dec 02 2011

Keywords

Comments

Column 7 of A201503

Examples

			Some solutions for n=4
..0..0..0..0..0..0..1....0..0..0..0..0..0..1....0..0..0..0..0..0..0
..0..0..0..0..0..0..1....0..0..0..0..1..1..1....0..0..0..0..1..1..1
..0..1..1..1..1..1..1....0..0..1..1..1..1..1....0..0..0..1..1..1..1
..0..1..1..1..1..1..1....0..0..1..1..1..1..1....1..1..1..1..1..1..1
		

Formula

Empirical: a(n) = a(n-1) +2*a(n-2) -3*a(n-3) +a(n-4) +2*a(n-5) -4*a(n-6) +2*a(n-7) +2*a(n-8) -4*a(n-9) +a(n-10) +3*a(n-11) -3*a(n-12) +a(n-14) -a(n-15) +2*a(n-16) -a(n-17) +a(n-19) -a(n-20) +a(n-22) -a(n-23) +a(n-25) -2*a(n-26) +a(n-27) -a(n-28) +3*a(n-30) -3*a(n-31) -a(n-32) +4*a(n-33) -2*a(n-34) -2*a(n-35) +4*a(n-36) -2*a(n-37) -a(n-38) +3*a(n-39) -2*a(n-40) -a(n-41) +a(n-42)
Even terms are A188185((n-4)/2)
Showing 1-4 of 4 results.