This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A201509 #43 Dec 23 2023 14:33:36 %S A201509 1,1,2,2,4,5,1,8,12,4,16,28,13,1,32,64,38,6,64,144,104,25,1,128,320, %T A201509 272,88,8,256,704,688,280,41,1,512,1536,1696,832,170,10,1024,3328, %U A201509 4096,2352,620,61,1,2048,7168 %N A201509 Irregular triangle read by rows: T(n,k) = 2*T(n-1,k) + T(n-2,k-1) with T(0,0) = 0, T(n,0) = T(1,1) = 1 and T(n,k) = 0 if k < 0 or if n < k. %C A201509 This is the pseudo-triangle whose successive lines are of the type T(n,0), T(n,1)+T(n-1,0), T(n,2)+T(n-1,1), ... T(n,k)+T(n-1,k-1), without 0's, with T=A201701. [e-mail, _Philippe Deléham_, Dec 04 2011] %F A201509 T(n,k) = 2*T(n-1,k) + T(n-2,k-1) with T(0,0) = 0, T(n,0) = T(1,1) = 1 and T(n,k) = 0 if k < 0 or if n < k. - _Philippe Deléham_, Dec 05 2011 %F A201509 The n-th row polynomial appears to equal Sum_{k = 1..floor((n+1)/2)} binomial(n,2*k-1)*(1+t)^k. Cf. A034867. - _Peter Bala_, Sep 10 2012 %F A201509 Aside from the first two rows below, the signed coefficients appear in the expansion (b*x - 1)^2 / (a*b*x^2 - 2a*x + 1) = 1 + (2 a - 2 b)x + (4 a^2 - 5 a b + b^2)x^2 + (8 a^3 - 12 a^2b + 4 ab^2)x^3 + ..., the reciprocal of the derivative of x*(1-a*x) / (1-b*x). This is related to A263633 via the expansion (a*b*x^2 - 2a*x + 1) / (b*x - 1)^2 = 1 + (b - a) (2x + 3b x^2 + 4b^2 x^3 + ...). See also A201780. - _Tom Copeland_, Oct 30 2023 %e A201509 Triangle starts: %e A201509 1 1 %e A201509 2 2 %e A201509 4 5 1 %e A201509 8 12 4 %e A201509 16 28 13 1 %e A201509 32 64 38 6 %e A201509 64 144 104 25 1 %e A201509 128 320 272 88 8 %e A201509 ... %e A201509 Triangle begins (full version): %e A201509 0 %e A201509 1, 1 %e A201509 2, 2, 0 %e A201509 4, 5, 1, 0 %e A201509 8, 12, 4, 0, 0 %e A201509 16, 28, 13, 1, 0, 0 %e A201509 32, 64, 38, 6, 0, 0, 0 %e A201509 64, 144, 104, 25, 1, 0, 0, 0 %e A201509 128, 320, 272, 88, 8, 0, 0, 0, 0 %Y A201509 Cf. A052542 (row sums). %Y A201509 Cf. A039991, A034867. %Y A201509 Cf. A201780, A263633. %K A201509 nonn,tabf %O A201509 0,3 %A A201509 _Paul Curtz_, Dec 02 2011 %E A201509 Edited and new name using _Philippe Deléham_'s formula, _Joerg Arndt_, Dec 13 2023