This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A201518 #11 Jan 30 2025 15:40:27 %S A201518 1,4,3,1,3,6,3,5,5,0,0,6,9,0,3,9,1,3,5,7,6,4,0,4,4,9,9,3,7,8,2,7,5,4, %T A201518 2,1,3,0,4,1,2,3,9,5,6,8,1,7,9,9,6,4,5,3,6,5,1,5,2,4,6,6,6,2,8,0,3,0, %U A201518 0,3,3,6,4,7,5,9,5,6,4,3,9,0,3,8,9,5,2,1,6,2,8,8,2,5,4,7,9,9,4 %N A201518 Decimal expansion of greatest x satisfying 4*x^2 - 1 = sec(x) and 0 < x < Pi. %C A201518 See A201397 for a guide to related sequences. The Mathematica program includes a graph. %H A201518 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>. %e A201518 least: 0.774427257079893623257029009000... %e A201518 greatest: 1.4313635500690391357640449937... %t A201518 a = 4; c = -1; %t A201518 f[x_] := a*x^2 + c; g[x_] := Sec[x] %t A201518 Plot[{f[x], g[x]}, {x, 0, Pi/2}, {AxesOrigin -> {0, 0}}] %t A201518 r = x /. FindRoot[f[x] == g[x], {x, .7, .8}, WorkingPrecision -> 110] %t A201518 RealDigits[r] (* A201517 *) %t A201518 r = x /. FindRoot[f[x] == g[x], {x, 1.4, 1.5}, WorkingPrecision -> 110] %t A201518 RealDigits[r] (* A201518 *) %Y A201518 Cf. A201397. %K A201518 nonn,cons %O A201518 1,2 %A A201518 _Clark Kimberling_, Dec 02 2011