A201524 Decimal expansion of greatest x satisfying 7*x^2 - 1 = sec(x) and 0 < x < Pi.
1, 5, 0, 3, 2, 6, 2, 1, 5, 2, 1, 3, 1, 4, 9, 3, 0, 9, 9, 9, 1, 9, 0, 7, 9, 9, 0, 7, 5, 2, 0, 0, 8, 3, 0, 8, 2, 9, 0, 8, 3, 4, 3, 1, 7, 1, 5, 6, 2, 7, 8, 2, 9, 3, 8, 3, 2, 1, 0, 3, 3, 2, 1, 4, 8, 8, 7, 2, 7, 4, 9, 7, 2, 3, 3, 7, 5, 1, 4, 2, 4, 9, 8, 0, 0, 9, 9, 4, 8, 7, 2, 9, 9, 6, 6, 2, 0, 5, 6
Offset: 1
Examples
least: 0.557895175779035299832869736313873... greatest: 1.5032621521314930999190799075200...
Crossrefs
Cf. A201397.
Programs
-
Mathematica
a = 7; c = -1; f[x_] := a*x^2 + c; g[x_] := Sec[x] Plot[{f[x], g[x]}, {x, 0, Pi/2}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, .5, .6}, WorkingPrecision -> 110] RealDigits[r] (* A201523 *) r = x /. FindRoot[f[x] == g[x], {x, 1.5, 1.6}, WorkingPrecision -> 110] RealDigits[r] (* A201524 *)
Comments