This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A201525 #12 Jan 30 2025 15:42:59 %S A201525 5,1,8,5,7,7,0,0,2,2,0,1,7,1,1,4,5,8,2,5,3,1,0,9,8,2,0,4,1,7,2,4,4,9, %T A201525 9,4,8,3,1,0,4,3,3,3,7,0,3,4,8,6,2,9,7,2,7,1,9,3,3,8,9,8,0,8,1,5,4,5, %U A201525 0,6,9,7,3,1,1,0,2,9,7,7,7,1,8,4,3,4,8,1,3,2,6,4,1,2,8,0,7,3,0 %N A201525 Decimal expansion of least x satisfying 8*x^2 - 1 = sec(x) and 0 < x < Pi. %C A201525 See A201397 for a guide to related sequences. The Mathematica program includes a graph. %H A201525 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>. %e A201525 least: 0.518577002201711458253109820417244... %e A201525 greatest: 1.5130057374477490977746930540120... %t A201525 a = 8; c = -1; %t A201525 f[x_] := a*x^2 + c; g[x_] := Sec[x] %t A201525 Plot[{f[x], g[x]}, {x, 0, Pi/2}, {AxesOrigin -> {0, 0}}] %t A201525 r = x /. FindRoot[f[x] == g[x], {x, .5, .6}, WorkingPrecision -> 110] %t A201525 RealDigits[r] (* A201525 *) %t A201525 r = x /. FindRoot[f[x] == g[x], {x, 1.5, 1.6}, WorkingPrecision -> 110] %t A201525 RealDigits[r] (* A201526 *) %Y A201525 Cf. A201397. %K A201525 nonn,cons %O A201525 0,1 %A A201525 _Clark Kimberling_, Dec 02 2011