This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A201526 #10 Jan 30 2025 15:43:02 %S A201526 1,5,1,3,0,0,5,7,3,7,4,4,7,7,4,9,0,9,7,7,7,4,6,9,3,0,5,4,0,1,2,0,7,0, %T A201526 4,4,6,0,1,9,5,5,8,8,8,6,9,4,3,2,2,3,4,2,0,4,7,3,9,1,8,7,6,1,2,1,5,8, %U A201526 8,2,8,9,4,5,6,1,0,7,7,4,1,4,7,8,7,3,8,0,0,8,6,2,7,8,8,7,6,6,3 %N A201526 Decimal expansion of greatest x satisfying 8*x^2 - 1 = sec(x) and 0 < x < Pi. %C A201526 See A201397 for a guide to related sequences. The Mathematica program includes a graph. %H A201526 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>. %e A201526 least: 0.518577002201711458253109820417244... %e A201526 greatest: 1.5130057374477490977746930540120... %t A201526 a = 8; c = -1; %t A201526 f[x_] := a*x^2 + c; g[x_] := Sec[x] %t A201526 Plot[{f[x], g[x]}, {x, 0, Pi/2}, {AxesOrigin -> {0, 0}}] %t A201526 r = x /. FindRoot[f[x] == g[x], {x, .5, .6}, WorkingPrecision -> 110] %t A201526 RealDigits[r] (* A201525 *) %t A201526 r = x /. FindRoot[f[x] == g[x], {x, 1.5, 1.6}, WorkingPrecision -> 110] %t A201526 RealDigits[r] (* A201526 *) %Y A201526 Cf. A201397. %K A201526 nonn,cons %O A201526 1,2 %A A201526 _Clark Kimberling_, Dec 02 2011