A201533 Number of n X 2 0..2 arrays with rows and columns lexicographically nondecreasing and every element equal to at least one horizontal or vertical neighbor.
3, 9, 25, 69, 175, 410, 899, 1859, 3649, 6840, 12311, 21378, 35964, 58819, 93800, 146222, 223292, 334639, 492954, 714755, 1021293, 1439616, 2003809, 2756429, 3750155, 5049674, 6733825, 8898024, 11656994, 15147825, 19533390, 25006144
Offset: 1
Keywords
Examples
Some solutions for n=10: ..0..2....0..2....0..1....0..0....0..1....0..2....0..0....0..0....0..1....0..1 ..0..2....0..2....0..1....0..1....0..1....0..2....0..0....0..1....0..1....0..1 ..0..2....0..2....1..1....1..1....0..1....2..0....0..0....0..1....0..1....0..1 ..0..2....0..2....1..2....1..1....0..1....2..0....0..2....0..2....1..0....0..1 ..0..2....0..2....1..2....1..2....1..0....2..0....1..2....0..2....1..0....1..0 ..1..1....1..0....1..2....1..2....1..0....2..0....1..2....0..2....1..0....1..0 ..1..1....1..0....1..2....2..1....1..0....2..2....2..2....0..2....1..1....2..2 ..1..2....2..0....2..0....2..1....2..1....2..2....2..2....2..1....2..1....2..2 ..1..2....2..0....2..0....2..2....2..1....2..2....2..2....2..1....2..2....2..2 ..1..2....2..2....2..2....2..2....2..2....2..2....2..2....2..1....2..2....2..2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A201539.
Formula
Empirical: a(n) = (1/40320)*n^8 - (1/3360)*n^7 + (23/2880)*n^6 - (1/48)*n^5 + (247/5760)*n^4 + (231/160)*n^3 - (6777/1120)*n^2 + (3121/168)*n - 20 for n>3.
Conjectures from Colin Barker, May 23 2018: (Start)
G.f.: x*(3 - 18*x + 52*x^2 - 84*x^3 + 76*x^4 - 25*x^5 - 19*x^6 + 20*x^7 + x^8 - 9*x^9 + 5*x^10 - x^11) / (1 - x)^9.
a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9) for n>12.
(End)
Comments