cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A201560 a(n) = (Sum(m^(n-1), m=1..n-1) + 1) modulo n.

Original entry on oeis.org

0, 0, 0, 1, 0, 4, 0, 1, 7, 6, 0, 1, 0, 8, 11, 1, 0, 10, 0, 1, 15, 12, 0, 1, 21, 14, 19, 1, 0, 16, 0, 1, 23, 18, 1, 1, 0, 20, 27, 1, 0, 22, 0, 1, 22, 24, 0, 1, 43, 26, 35, 1, 0, 28, 1, 1, 39, 30, 0, 1, 0, 32, 43, 1, 53, 34, 0, 1, 47, 36, 0, 1, 0, 38, 51, 1, 1
Offset: 1

Views

Author

Jonathan Sondow, Jan 11 2012

Keywords

Comments

Equals 0 if n is 1 or a prime, by Fermat's little theorem. It is conjectured that the converse is also true; see A055030, A055032, A204187 and note that a(n) = 0 <==> A055032(n) = 1 <==> A204187(n) = n-1.

Examples

			Sum(m^3, m=1..3) + 1 = 1^3 + 2^3 + 3^3 + 1 = 37 == 1 (mod 4), so a(4) = 1.
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, A17.

Crossrefs

Programs

  • Mathematica
    Table[Mod[Plus @@ PowerMod[Range[n - 1], n - 1, n] + 1, n], {n, 77}] (* Ivan Neretin, Sep 23 2016 *)

Formula

a(prime) = 0 and a(4n) = 1.
a(n) == A204187(n) + 1 (mod n).