This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A201563 #18 Feb 07 2025 16:44:07 %S A201563 3,0,4,4,0,3,0,1,6,6,1,1,9,2,3,5,2,8,1,6,2,2,9,8,3,5,4,9,8,0,1,1,0,0, %T A201563 7,9,0,3,6,8,8,2,8,0,4,8,6,0,0,7,4,4,4,9,6,3,6,8,1,1,0,7,1,7,1,3,0,0, %U A201563 5,4,3,7,6,0,8,6,7,4,0,3,4,7,2,7,6,9,7,1,2,4,3,8,5,2,4,3,1,5,6 %N A201563 Decimal expansion of greatest x satisfying x^2 + 1 = csc(x) and 0 < x < Pi. %C A201563 See A201564 for a guide to related sequences. The Mathematica program includes a graph. %H A201563 G. C. Greubel, <a href="/A201563/b201563.txt">Table of n, a(n) for n = 1..10000</a> %H A201563 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>. %e A201563 least: 0.71942129632741031571692297003733204908... %e A201563 greatest: 3.04403016611923528162298354980110079... %t A201563 a = 1; c = 1; %t A201563 f[x_] := a*x^2 + c; g[x_] := Csc[x] %t A201563 Plot[{f[x], g[x]}, {x, 0, Pi}, {AxesOrigin -> {0, 0}}] %t A201563 r = x /. FindRoot[f[x] == g[x], {x, .7, .8}, WorkingPrecision -> 110] %t A201563 RealDigits[r] (* A196825 *) %t A201563 r = x /. FindRoot[f[x] == g[x], {x, 3.0, 3.1}, WorkingPrecision -> 110] %t A201563 RealDigits[r] (* A201563 *) %o A201563 (PARI) a=1; c=1; solve(x=3, 3.1, a*x^2 + c - 1/sin(x)) \\ _G. C. Greubel_, Aug 21 2018 %Y A201563 Cf. A201564. %K A201563 nonn,cons %O A201563 1,1 %A A201563 _Clark Kimberling_, Dec 03 2011