This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A201568 #13 Feb 07 2025 16:44:07 %S A201568 2,4,8,7,4,9,0,0,0,7,1,6,2,9,5,9,8,5,3,6,5,2,9,2,4,0,8,3,7,1,6,9,4,1, %T A201568 0,3,9,7,1,7,2,2,7,0,7,8,6,8,7,3,3,4,9,6,1,4,2,4,4,2,2,3,6,6,8,1,9,7, %U A201568 3,6,4,6,7,3,2,3,9,3,5,8,5,8,5,1,0,8,2,9,3,6,4,2,8,2,2,8,8,8,4 %N A201568 Decimal expansion of least x satisfying x^2 + 4 = csc(x) and 0 < x < Pi. %C A201568 See A201564 for a guide to related sequences. The Mathematica program includes a graph. %H A201568 G. C. Greubel, <a href="/A201568/b201568.txt">Table of n, a(n) for n = 0..10000</a> %H A201568 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>. %e A201568 least: 0.2487490007162959853652924083716941039... %e A201568 greatest: 3.0669301776557967159210627137381980... %t A201568 a = 1; c = 4; %t A201568 f[x_] := a*x^2 + c; g[x_] := Csc[x] %t A201568 Plot[{f[x], g[x]}, {x, 0, Pi}, {AxesOrigin -> {0, 0}}] %t A201568 r = x /. FindRoot[f[x] == g[x], {x, .2, .3}, WorkingPrecision -> 110] %t A201568 RealDigits[r] (* A201568 *) %t A201568 r = x /. FindRoot[f[x] == g[x], {x, 3.0, 3.1}, WorkingPrecision -> 110] %t A201568 RealDigits[r] (* A201569 *) %o A201568 (PARI) a=1; c=4; solve(x=0.2, .3, a*x^2 + c - 1/sin(x)) \\ _G. C. Greubel_, Aug 21 2018 %Y A201568 Cf. A201564. %K A201568 nonn,cons %O A201568 0,1 %A A201568 _Clark Kimberling_, Dec 03 2011