This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A201570 #13 Feb 07 2025 16:44:07 %S A201570 1,9,9,7,4,2,2,9,2,8,1,9,4,7,2,1,3,7,0,8,6,7,4,0,5,1,5,9,5,5,3,4,8,1, %T A201570 1,4,5,3,2,5,4,5,4,4,3,9,0,3,2,5,3,2,4,3,3,4,5,3,8,3,3,5,7,7,9,2,2,9, %U A201570 6,3,1,0,3,9,3,7,2,6,7,6,1,4,9,0,4,3,4,8,2,7,7,7,7,7,5,6,0,7,1 %N A201570 Decimal expansion of least x satisfying x^2 + 5 = csc(x) and 0 < x < Pi. %C A201570 See A201564 for a guide to related sequences. The Mathematica program includes a graph. %H A201570 G. C. Greubel, <a href="/A201570/b201570.txt">Table of n, a(n) for n = 0..10000</a> %H A201570 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>. %e A201570 least: 0.19974229281947213708674051595534811453... %e A201570 greatest: 3.07227983005125033585986646046469906... %t A201570 a = 1; c = 5; %t A201570 f[x_] := a*x^2 + c; g[x_] := Csc[x] %t A201570 Plot[{f[x], g[x]}, {x, 0, Pi}, {AxesOrigin -> {0, 0}}] %t A201570 r = x /. FindRoot[f[x] == g[x], {x, .1, .2}, WorkingPrecision -> 110] %t A201570 RealDigits[r] (* A201570 *) %t A201570 r = x /. FindRoot[f[x] == g[x], {x, 3.0, 3.1}, WorkingPrecision -> 110] %t A201570 RealDigits[r] (* A201571 *) %o A201570 (PARI) a=1; c=5; solve(x=0.1, 0.2, a*x^2 + c - 1/sin(x)) \\ _G. C. Greubel_, Aug 21 2018 %Y A201570 Cf. A201564. %K A201570 nonn,cons %O A201570 0,2 %A A201570 _Clark Kimberling_, Dec 03 2011