This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A201573 #15 Feb 07 2025 16:44:07 %S A201573 3,0,7,6,8,9,4,9,2,9,2,4,6,1,9,2,0,2,3,1,6,6,6,9,3,6,4,7,3,2,7,7,2,5, %T A201573 7,7,3,2,4,8,4,1,9,8,0,6,5,8,2,3,7,4,3,2,0,1,5,8,3,9,9,5,2,4,3,9,9,1, %U A201573 1,1,5,7,6,0,6,3,1,5,1,1,6,6,3,2,3,5,4,5,1,8,1,1,9,1,2,3,5,6,5,9 %N A201573 Decimal expansion of greatest x satisfying x^2 + 6 = csc(x) and 0 < x < Pi. %C A201573 See A201564 for a guide to related sequences. The Mathematica program includes a graph. %H A201573 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>. %e A201573 least: 0.166669163175400949565200320627761299158167... %e A201573 greatest: 3.076894929246192023166693647327725773248... %t A201573 a = 1; c = 6; %t A201573 f[x_] := a*x^2 + c; g[x_] := Csc[x] %t A201573 Plot[{f[x], g[x]}, {x, 0, Pi}, {AxesOrigin -> {0, 0}}] %t A201573 r = x /. FindRoot[f[x] == g[x], {x, .1, .2}, WorkingPrecision -> 110] %t A201573 RealDigits[r] (* A201572 *) %t A201573 r = x /. FindRoot[f[x] == g[x], {x, 3.0, 3.1}, WorkingPrecision -> 110] %t A201573 RealDigits[r] (* A201573 *) %o A201573 (PARI) a=1; c=6; solve(x=3, 3.1, a*x^2 + c - 1/sin(x)) \\ _G. C. Greubel_, Aug 21 2018 %Y A201573 Cf. A201564. %K A201573 nonn,cons %O A201573 1,1 %A A201573 _Clark Kimberling_, Dec 03 2011 %E A201573 Terms a(87) onward corrected by _G. C. Greubel_, Aug 21 2018