This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A201574 #13 Feb 07 2025 16:44:07 %S A201574 1,4,2,9,2,7,5,8,2,9,9,3,9,2,0,8,6,7,0,0,4,3,1,0,4,4,3,0,7,5,5,4,7,4, %T A201574 8,2,4,0,8,8,4,3,5,1,3,9,9,1,0,5,0,9,4,5,4,0,2,7,8,5,0,1,0,4,5,9,2,8, %U A201574 5,0,3,0,7,9,5,5,0,5,9,4,2,2,7,2,6,3,9,7,7,6,0,5,3,6,5,1,6,0,8 %N A201574 Decimal expansion of least x satisfying x^2 + 7 = csc(x) and 0 < x < Pi. %C A201574 See A201564 for a guide to related sequences. The Mathematica program includes a graph. %H A201574 G. C. Greubel, <a href="/A201574/b201574.txt">Table of n, a(n) for n = 0..10000</a> %H A201574 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>. %e A201574 least: 0.14292758299392086700431044307554748240884... %e A201574 greatest: 3.08092023229520680455935849821275370108... %t A201574 a = 1; c = 7; %t A201574 f[x_] := a*x^2 + c; g[x_] := Csc[x] %t A201574 Plot[{f[x], g[x]}, {x, 0, Pi}, {AxesOrigin -> {0, 0}}] %t A201574 r = x /. FindRoot[f[x] == g[x], {x, .1, .2}, WorkingPrecision -> 110] %t A201574 RealDigits[r] (* A201574 *) %t A201574 r = x /. FindRoot[f[x] == g[x], {x, 3.0, 3.1}, WorkingPrecision -> 110] %t A201574 RealDigits[r] (* A201575 *) %o A201574 (PARI) a=1; c=7; solve(x=0.1, .2, a*x^2 + c - 1/sin(x)) \\ _G. C. Greubel_, Aug 21 2018 %Y A201574 Cf. A201564. %K A201574 nonn,cons %O A201574 0,2 %A A201574 _Clark Kimberling_, Dec 03 2011