This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A201578 #13 Feb 07 2025 16:44:07 %S A201578 1,0,0,0,6,6,8,8,4,0,7,2,9,1,9,3,0,9,2,7,9,8,0,5,3,8,4,4,5,9,3,8,1,1, %T A201578 1,5,0,6,0,7,1,7,8,5,4,6,9,8,0,2,2,5,0,0,6,0,9,9,9,8,6,7,6,2,9,6,3,7, %U A201578 6,9,7,5,0,6,9,5,8,2,6,1,7,7,6,0,5,8,1,0,9,3,5,5,1,2,5,2,5,1,2 %N A201578 Decimal expansion of least x satisfying x^2 + 10 = csc(x) and 0 < x < Pi. %C A201578 See A201564 for a guide to related sequences. The Mathematica program includes a graph. %H A201578 G. C. Greubel, <a href="/A201578/b201578.txt">Table of n, a(n) for n = 0..10000</a> %H A201578 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>. %e A201578 least: 0.100066884072919309279805384459381115060... %e A201578 greatest: 3.090421270152151453651497443899920534... %t A201578 a = 1; c = 10; %t A201578 f[x_] := a*x^2 + c; g[x_] := Csc[x] %t A201578 Plot[{f[x], g[x]}, {x, 0, Pi}, {AxesOrigin -> {0, 0}}] %t A201578 r = x /. FindRoot[f[x] == g[x], {x, .1, .2}, WorkingPrecision -> 110] %t A201578 RealDigits[r] (* A201578 *) %t A201578 r = x /. FindRoot[f[x] == g[x], {x, 3.0, 3.1}, WorkingPrecision -> 110] %t A201578 RealDigits[r] (* A201581 *) %o A201578 (PARI) a=1; c=10; solve(x=0.1, 0.2, a*x^2 + c - 1/sin(x)) \\ _G. C. Greubel_, Aug 21 2018 %Y A201578 Cf. A201564. %K A201578 nonn,cons %O A201578 0,5 %A A201578 _Clark Kimberling_, Dec 03 2011