This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A201579 #14 Feb 07 2025 16:44:07 %S A201579 1,1,1,1,8,7,6,4,9,5,3,0,3,3,6,5,5,2,4,1,1,3,2,1,6,9,1,8,0,0,6,5,7,5, %T A201579 3,3,6,1,1,7,8,7,3,4,2,3,4,6,0,7,0,0,3,7,0,8,5,6,9,6,1,2,1,2,7,2,8,3, %U A201579 8,6,1,8,4,4,7,2,8,6,5,9,0,9,2,5,8,1,7,6,4,2,8,9,2,7,5,3,2,4,7 %N A201579 Decimal expansion of least x satisfying x^2 + 9 = csc(x) and 0 < x < Pi. %C A201579 See A201564 for a guide to related sequences. The Mathematica program includes a graph. %H A201579 G. C. Greubel, <a href="/A201579/b201579.txt">Table of n, a(n) for n = 0..10000</a> %H A201579 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>. %e A201579 least: 0.111187649530336552411321691800657533611... %e A201579 greatest: 3.087609602783606133001190498846701507... %t A201579 a = 1; c = 9; %t A201579 f[x_] := a*x^2 + c; g[x_] := Csc[x] %t A201579 Plot[{f[x], g[x]}, {x, 0, Pi}, {AxesOrigin -> {0, 0}}] %t A201579 r = x /. FindRoot[f[x] == g[x], {x, .1, .2}, WorkingPrecision -> 110] %t A201579 RealDigits[r] (* A201579 *) %t A201579 r = x /. FindRoot[f[x] == g[x], {x, 3.0, 3.1}, WorkingPrecision -> 110] %t A201579 RealDigits[r] (* A201580 *) %o A201579 (PARI) a=1; c=9; solve(x=0.1, .2, a*x^2 + c - 1/sin(x)) \\ _G. C. Greubel_, Aug 21 2018 %Y A201579 Cf. A201564. %K A201579 nonn,cons %O A201579 0,5 %A A201579 _Clark Kimberling_, Dec 03 2011