This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A201580 #13 Feb 07 2025 16:44:07 %S A201580 3,0,8,7,6,0,9,6,0,2,7,8,3,6,0,6,1,3,3,0,0,1,1,9,0,4,9,8,8,4,6,7,0,1, %T A201580 5,0,7,7,1,5,8,0,1,9,5,4,6,6,8,5,6,6,5,3,7,9,3,4,2,4,0,9,4,1,4,2,9,0, %U A201580 1,8,0,5,2,0,5,2,6,7,1,8,3,9,8,1,8,5,7,2,8,3,5,2,7,8,2,3,7,6,2 %N A201580 Decimal expansion of greatest x satisfying x^2 + 9 = csc(x) and 0 < x < Pi. %C A201580 See A201564 for a guide to related sequences. The Mathematica program includes a graph. %H A201580 G. C. Greubel, <a href="/A201580/b201580.txt">Table of n, a(n) for n = 1..10000</a> %H A201580 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>. %e A201580 least: 0.111187649530336552411321691800657533611... %e A201580 greatest: 3.087609602783606133001190498846701507... %t A201580 a = 1; c = 9; %t A201580 f[x_] := a*x^2 + c; g[x_] := Csc[x] %t A201580 Plot[{f[x], g[x]}, {x, 0, Pi}, {AxesOrigin -> {0, 0}}] %t A201580 r = x /. FindRoot[f[x] == g[x], {x, .1, .2}, WorkingPrecision -> 110] %t A201580 RealDigits[r] (* A201578 *) %t A201580 r = x /. FindRoot[f[x] == g[x], {x, 3.0, 3.1}, WorkingPrecision -> 110] %t A201580 RealDigits[r] (* A201580 *) %o A201580 (PARI) a=1; c=9; solve(x=3, 3.1, a*x^2 + c - 1/sin(x)) \\ _G. C. Greubel_, Aug 21 2018 %Y A201580 Cf. A201564. %K A201580 nonn,cons %O A201580 1,1 %A A201580 _Clark Kimberling_, Dec 03 2011