This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A201582 #12 Feb 07 2025 16:44:07 %S A201582 3,0,3,2,6,4,5,4,1,8,3,8,8,7,5,6,1,8,8,6,7,5,3,2,5,6,3,6,8,0,2,6,0,8, %T A201582 9,3,2,8,4,6,7,2,3,6,2,6,7,4,9,9,7,1,8,5,9,8,5,1,9,8,4,5,6,7,7,8,0,6, %U A201582 7,1,1,3,4,1,9,9,2,4,2,2,5,0,4,2,5,5,8,4,3,8,8,9,8,8,9,7,1,0,4 %N A201582 Decimal expansion of greatest x satisfying x^2 = csc(x) and 0<x<Pi. %C A201582 See A201564 for a guide to related sequences. The Mathematica program includes a graph. %H A201582 G. C. Greubel, <a href="/A201582/b201582.txt">Table of n, a(n) for n = 1..10000</a> %H A201582 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>. %e A201582 least: 1.068223544197249018283471114263092898468... %e A201582 greatest: 3.032645418388756188675325636802608932... %t A201582 a = 1; c = 0; %t A201582 f[x_] := a*x^2 + c; g[x_] := Csc[x] %t A201582 Plot[{f[x], g[x]}, {x, 0, Pi}, {AxesOrigin -> {0, 0}}] %t A201582 r = x /. FindRoot[f[x] == g[x], {x, .1, .2}, WorkingPrecision -> 110] %t A201582 RealDigits[r] (* A196617 *) %t A201582 r = x /. FindRoot[f[x] == g[x], {x, 3.0, 3.1}, WorkingPrecision -> 110] %t A201582 RealDigits[r] (* A201582 *) %o A201582 (PARI) a=1; c=0; solve(x=3, 3.1, a*x^2 + c - 1/sin(x)) \\ _G. C. Greubel_, Aug 22 2018 %Y A201582 Cf. A201564, A196617. %K A201582 nonn,cons %O A201582 1,1 %A A201582 _Clark Kimberling_, Dec 03 2011