This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A201589 #13 Feb 07 2025 16:44:07 %S A201589 5,9,6,6,2,6,8,1,9,8,6,0,7,0,4,5,4,6,7,6,1,8,3,2,8,5,9,0,8,2,1,4,1,0, %T A201589 4,8,3,0,3,6,5,3,1,0,0,8,7,0,2,9,3,0,5,7,4,4,7,1,8,2,0,4,7,7,5,8,3,7, %U A201589 4,7,8,6,0,6,4,1,9,9,1,6,3,4,1,9,4,0,7,6,9,5,4,7,5,8,8,9,5,2,2,7,8 %N A201589 Decimal expansion of least x satisfying 5*x^2 = csc(x) and 0 < x < Pi. %C A201589 See A201564 for a guide to related sequences. The Mathematica program includes a graph. %H A201589 G. C. Greubel, <a href="/A201589/b201589.txt">Table of n, a(n) for n = 0..10000</a> %H A201589 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>. %e A201589 least: 0.596626819860704546761832859082141048303653100... %e A201589 greatest: 3.121059463523827415360175700034092048910749... %t A201589 a = 5; c = 0; %t A201589 f[x_] := a*x^2 + c; g[x_] := Csc[x] %t A201589 Plot[{f[x], g[x]}, {x, 0, Pi}, {AxesOrigin -> {0, 0}}] %t A201589 r = x /. FindRoot[f[x] == g[x], {x, .5, .6}, WorkingPrecision -> 110] %t A201589 RealDigits[r] (* A201589 *) %t A201589 r = x /. FindRoot[f[x] == g[x], {x, 3.1, 3.14}, WorkingPrecision -> 110] %t A201589 RealDigits[r] (* A201590 *) %o A201589 (PARI) a=5; c=0; solve(x=0.5, 1, a*x^2 + c - 1/sin(x)) \\ _G. C. Greubel_, Aug 22 2018 %Y A201589 Cf. A201564. %K A201589 nonn,cons %O A201589 0,1 %A A201589 _Clark Kimberling_, Dec 03 2011 %E A201589 Terms a(90) onward corrected by _G. C. Greubel_, Aug 22 2018