This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A201596 #58 Feb 16 2025 08:33:16 %S A201596 6,24,30,90,150,156,210,240,306,366,384,444,810,834,1086,1200,1326, %T A201596 2316,3876,4230,4350,8244,8880,9450,10686,10950,11784,12816,13554, %U A201596 15504,15576,16254,16506,16596,19446,19944,21516,38340,39990,41556,45786,47190,48246,59856 %N A201596 Record (maximal) gaps between prime triples (p, p+4, p+6). %C A201596 Prime triples (p, p+4, p+6) are one of the two types of densest permissible constellations of 3 primes (A022004 and A022005). By the Hardy-Littlewood k-tuple conjecture, average gaps between prime k-tuples are O(log^k(p)), with k=3 for triples. If a gap is larger than any preceding gap, we call it a maximal gap, or a record gap. Maximal gaps may be significantly larger than average gaps; this sequence suggests that maximal gaps between triples are O(log^4(p)). %C A201596 A201597 lists initial primes p in triples (p, p+4, p+6) preceding the maximal gaps. A233435 lists the corresponding primes p at the end of the maximal gaps. %H A201596 Alexei Kourbatov, <a href="/A201596/b201596.txt">Table of n, a(n) for n = 1..79</a> %H A201596 G. H. Hardy and J. E. Littlewood, <a href="https://dx.doi.org/10.1007/BF02403921">Some problems of 'Partitio numerorum'; III: on the expression of a number as a sum of primes</a>, Acta Mathematica, Vol. 44, pp. 1-70, 1923. %H A201596 Alexei Kourbatov, <a href="http://www.javascripter.net/math/primes/maximalgapsbetweenktuples.htm">Maximal gaps between prime k-tuples</a> %H A201596 A. Kourbatov, <a href="http://arxiv.org/abs/1301.2242">Maximal gaps between prime k-tuples: a statistical approach</a>, arXiv preprint arXiv:1301.2242 [math.NT], 2013 and <a href="https://cs.uwaterloo.ca/journals/JIS/VOL16/Kourbatov/kourbatov3.html">J. Int. Seq. 16 (2013) #13.5.2</a> %H A201596 Alexei Kourbatov, <a href="http://arxiv.org/abs/1309.4053">Tables of record gaps between prime constellations</a>, arXiv preprint arXiv:1309.4053 [math.NT], 2013. %H A201596 Alexei Kourbatov, <a href="http://arxiv.org/abs/1401.6959">The distribution of maximal prime gaps in Cramer's probabilistic model of primes</a>, arXiv preprint arXiv:1401.6959 [math.NT], 2014. %H A201596 Alexei Kourbatov and Marek Wolf, <a href="http://arxiv.org/abs/1901.03785">Predicting maximal gaps in sets of primes</a>, arXiv preprint arXiv:1901.03785 [math.NT], 2019. %H A201596 Norman Luhn, <a href="https://pzktupel.de/RecordGaps/GAP03.php">Record Gaps Between Prime Triplets</a>. %H A201596 Eric W. Weisstein, <a href="https://mathworld.wolfram.com/k-TupleConjecture.html">k-Tuple Conjecture</a> %F A201596 Gaps between prime triples (p, p+4, p+6) are smaller than 0.35*(log p)^4, where p is the prime at the end of the gap. There is no rigorous proof of this formula. The O(log^4(p)) growth rate is suggested by numerical data and heuristics based on probability considerations. %e A201596 The gap of 6 between triples starting at p=7 and p=13 is the very first gap, so a(1)=6. The gap of 24 between triples starting at p=13 and p=37 is a maximal gap - larger than any preceding gap; therefore a(2)=24. The gap of 30 between triples at p=37 and p=67 is again a maximal gap, so a(3)=30. The next gap is smaller, so it does not contribute to the sequence. %t A201596 DeleteDuplicates[Differences[Select[Partition[Prime[Range[5*10^6]],3,1],Differences[#]=={4,2}&][[;;,1]]],GreaterEqual] (* _Harvey P. Dale_, Feb 26 2023 *) %Y A201596 Cf. A022005 (prime triples p, p+4, p+6), A113274, A113404, A200503, A201598, A201062, A201073, A201051, A201251, A202281, A202361, A201597, A233435. %K A201596 nonn %O A201596 1,1 %A A201596 _Alexei Kourbatov_, Dec 03 2011