This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A201638 #14 Mar 17 2020 14:21:10 %S A201638 1,3,1,12,6,1,54,33,9,1,261,180,63,12,1,1323,990,405,102,15,1,6939, %T A201638 5508,2511,756,150,18,1,37341,30996,15309,5229,1260,207,21,1,205011, %U A201638 176256,92610,34776,9630,1944,273,24,1,1143801,1011609,558414,225828,69498,16281,2835,348,27,1 %N A201638 Triangle read by rows, T(n,k) for 0<=k<=n, generalizes the colored Motzkin paths of A107264. %F A201638 Recurrence: T(0,0)=1, T(0,k)=0 for k>0 and for n>=1 T(n,k) = T(n-1,k-1)+3*T(n-1,k)+3*T(n-1,k+1). %e A201638 [0] [1] %e A201638 [1] [3, 1] %e A201638 [2] [12, 6, 1] %e A201638 [3] [54, 33, 9, 1] %e A201638 [4] [261, 180, 63, 12, 1] %e A201638 [5] [1323, 990, 405, 102, 15, 1] %e A201638 [6] [6939, 5508, 2511, 756, 150, 18, 1] %e A201638 [7] [37341, 30996, 15309, 5229, 1260, 207, 21, 1] %t A201638 T[0, 0] = 1; T[n_, n_] = 1; T[n_, k_] /; 0 <= k <= n := T[n, k] = T[n - 1, k - 1] + 3*T[n - 1, k] + 3*T[n - 1, k + 1]; T[_, _] = 0; %t A201638 Table[T[n, k], {n, 0, 9}, {k, 0, n}] (* _Jean-François Alcover_, Jun 29 2019 *) %o A201638 (Sage) %o A201638 def A201638_triangle(dim): %o A201638 T = matrix(ZZ,dim,dim) %o A201638 for n in range(dim): T[n,n] = 1 %o A201638 for n in (1..dim-1): %o A201638 for k in (0..n-1): %o A201638 T[n,k] = T[n-1,k-1]+3*T[n-1,k]+3*T[n-1,k+1] %o A201638 return T %o A201638 A201638_triangle(8) %K A201638 nonn,tabl %O A201638 0,2 %A A201638 _Peter Luschny_, Sep 20 2012