This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A201643 #20 Oct 24 2024 04:18:41 %S A201643 3,5,7,9,15,21,27,35,63,105,135 %N A201643 John Leech's example of a set of eleven distinct odd numbers the sum of whose reciprocals is 1. %C A201643 There are smaller sets - see for example A201644. %C A201643 One of 17 possible sets of eleven numbers of the form 3^alpha 5^beta 7^gamma whose sum of reciprocals is 1. The 17 solutions are given in A211118 - A211134. - _N. J. A. Sloane_, Apr 02 2012 %D A201643 R. K. Guy, Unsolved Problems in Number Theory (UPINT), Section D11. %H A201643 Burshtein, Nechemia. <a href="http://dx.doi.org/10.1016/0012-365X(73)90136-2">On distinct unit fractions whose sum equals 1</a>. Discrete Math. 5 (1973), 201--206. MR0314738 (47 #3290) %H A201643 Burshtein, Nechemia. <a href="http://dx.doi.org/10.1016/j.disc.2007.08.049">All the solutions of the equation Sum_{i=1..11} 1/x_i = 1 in distinct integers of the form x_i = 3^alpha 5^beta 7^gamma</a>. Discrete Math. 308 (2008), no. 18, 4286--4292. MR2427761 (2009e:11061) %H A201643 The Prime Puzzles and Problems Connection, <a href="http://www.primepuzzles.net/problems/prob_035.htm">Problem 35</a>. %H A201643 <a href="/index/Ed#Egypt">Index entries for sequences related to Egyptian fractions</a> %Y A201643 Cf. A201643, A201644, A201646, A201647, A201648, A201649. %K A201643 nonn,fini,full %O A201643 1,1 %A A201643 _N. J. A. Sloane_, Dec 03 2011