This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A201653 #15 Feb 07 2025 16:44:07 %S A201653 3,1,2,4,5,1,9,9,1,2,5,0,1,3,8,7,6,9,3,9,6,8,8,0,1,9,6,5,0,1,1,6,2,4, %T A201653 9,9,4,1,4,4,8,7,8,6,3,8,0,3,1,2,5,4,7,4,3,5,3,6,7,5,6,7,1,9,1,1,5,1, %U A201653 2,3,6,6,8,1,2,3,6,1,2,8,1,1,4,9,6,9,6,4,8,0,0,1,1,1,0,0,4,6,9 %N A201653 Decimal expansion of greatest x satisfying 6*x^2 = csc(x) and 0 < x < Pi. %C A201653 See A201564 for a guide to related sequences. The Mathematica program includes a graph. %H A201653 G. C. Greubel, <a href="/A201653/b201653.txt">Table of n, a(n) for n = 1..10000</a> %H A201653 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>. %e A201653 least: 0.56010069491216076282384133379781207752937450... %e A201653 greatest: 3.12451991250138769396880196501162499414487... %t A201653 a = 6; c = 0; %t A201653 f[x_] := a*x^2 + c; g[x_] := Csc[x] %t A201653 Plot[{f[x], g[x]}, {x, 0, Pi}, {AxesOrigin -> {0, 0}}] %t A201653 r = x /. FindRoot[f[x] == g[x], {x, .5, .6}, WorkingPrecision -> 110] %t A201653 RealDigits[r] (* A201591 *) %t A201653 r = x /. FindRoot[f[x] == g[x], {x, 3.1, 3.14}, WorkingPrecision -> 110] %t A201653 RealDigits[r] (* A201653 *) %o A201653 (PARI) a=6; c=0; solve(x=3, 3.14, a*x^2 + c - 1/sin(x)) \\ _G. C. Greubel_, Aug 22 2018 %Y A201653 Cf. A201564. %K A201653 nonn,cons %O A201653 1,1 %A A201653 _Clark Kimberling_, Dec 03 2011