This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A201656 #13 Feb 07 2025 16:44:07 %S A201656 5,0,7,2,6,2,1,9,9,3,4,9,1,0,3,7,7,8,2,6,5,8,1,2,1,4,7,7,2,6,4,0,4,1, %T A201656 9,7,6,3,8,5,8,6,3,1,5,1,4,1,8,5,6,3,4,8,1,6,0,9,3,5,5,8,2,8,6,9,5,1, %U A201656 8,0,6,5,0,1,7,6,0,7,2,3,7,3,1,3,4,4,3,8,5,7,9,3,3,9,6,1,2,3,5 %N A201656 Decimal expansion of least x satisfying 8*x^2 = csc(x) and 0 < x < Pi. %C A201656 See A201564 for a guide to related sequences. The Mathematica program includes a graph. %H A201656 G. C. Greubel, <a href="/A201656/b201656.txt">Table of n, a(n) for n = 0..10000</a> %H A201656 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>. %e A201656 least: 0.507262199349103778265812147726404197638586... %e A201656 greatest: 3.128823571901654937275752484725028832935... %t A201656 a = 8; c = 0; %t A201656 f[x_] := a*x^2 + c; g[x_] := Csc[x] %t A201656 Plot[{f[x], g[x]}, {x, 0, Pi}, {AxesOrigin -> {0, 0}}] %t A201656 r = x /. FindRoot[f[x] == g[x], {x, .5, .6}, WorkingPrecision -> 110] %t A201656 RealDigits[r] (* A201656 *) %t A201656 r = x /. FindRoot[f[x] == g[x], {x, 3.1, 3.14}, WorkingPrecision -> 110] %t A201656 RealDigits[r] (* A201657 *) %o A201656 (PARI) a=8; c=0; solve(x=0.5, 1, a*x^2 + c - 1/sin(x)) \\ _G. C. Greubel_, Aug 22 2018 %Y A201656 Cf. A201564. %K A201656 nonn,cons %O A201656 0,1 %A A201656 _Clark Kimberling_, Dec 04 2011