This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A201657 #14 Feb 07 2025 16:44:07 %S A201657 3,1,2,8,8,2,3,5,7,1,9,0,1,6,5,4,9,3,7,2,7,5,7,5,2,4,8,4,7,2,5,0,2,8, %T A201657 8,3,2,9,3,5,6,2,6,0,4,0,3,6,8,4,2,0,1,5,6,6,1,4,6,1,4,9,2,7,1,4,3,3, %U A201657 7,0,1,9,7,0,0,7,8,0,2,5,0,1,7,3,4,0,2,6,9,9,5,3,8,2,2,6,2,0,0 %N A201657 Decimal expansion of greatest x satisfying 8*x^2 = csc(x) and 0 < x < Pi. %C A201657 See A201564 for a guide to related sequences. The Mathematica program includes a graph. %H A201657 G. C. Greubel, <a href="/A201657/b201657.txt">Table of n, a(n) for n = 1..10000</a> %H A201657 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>. %e A201657 least: 0.507262199349103778265812147726404197638586... %e A201657 greatest: 3.128823571901654937275752484725028832935... %t A201657 a = 8; c = 0; %t A201657 f[x_] := a*x^2 + c; g[x_] := Csc[x] %t A201657 Plot[{f[x], g[x]}, {x, 0, Pi}, {AxesOrigin -> {0, 0}}] %t A201657 r = x /. FindRoot[f[x] == g[x], {x, .5, .6}, WorkingPrecision -> 110] %t A201657 RealDigits[r] (* A201656 *) %t A201657 r = x /. FindRoot[f[x] == g[x], {x, 3.1, 3.14}, WorkingPrecision -> 110] %t A201657 RealDigits[r] (* A201657 *) %o A201657 (PARI) a=8; c=0; solve(x=3, 3.14, a*x^2 + c - 1/sin(x)) \\ _G. C. Greubel_, Aug 23 2018 %Y A201657 Cf. A201564. %K A201657 nonn,cons %O A201657 1,1 %A A201657 _Clark Kimberling_, Dec 04 2011