This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A201659 #12 Feb 07 2025 16:44:07 %S A201659 3,1,3,0,2,5,2,7,8,6,1,7,3,5,3,6,0,3,5,0,0,3,7,0,1,2,2,7,7,7,5,4,0,3, %T A201659 1,6,3,6,9,2,7,7,5,4,0,1,2,3,7,9,0,9,2,2,3,2,0,4,2,7,8,8,9,1,6,2,7,6, %U A201659 5,5,0,4,1,7,3,6,7,9,6,3,0,5,0,2,1,9,0,5,4,6,7,0,4,3,8,2,7,8,1 %N A201659 Decimal expansion of greatest x satisfying 9*x^2 = csc(x) and 0 < x < Pi. %C A201659 See A201564 for a guide to related sequences. The Mathematica program includes a graph. %H A201659 G. C. Greubel, <a href="/A201659/b201659.txt">Table of n, a(n) for n = 1..10000</a> %H A201659 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>. %e A201659 least: 0.4871825725461343607675424300430642207826... %e A201659 greatest: 3.1302527861735360350037012277754031636... %t A201659 a = 9; c = 0; %t A201659 f[x_] := a*x^2 + c; g[x_] := Csc[x] %t A201659 Plot[{f[x], g[x]}, {x, 0, Pi}, {AxesOrigin -> {0, 0}}] %t A201659 r = x /. FindRoot[f[x] == g[x], {x, .4, .5}, WorkingPrecision -> 110] %t A201659 RealDigits[r] (* A201658 *) %t A201659 r = x /. FindRoot[f[x] == g[x], {x, 3.1, 3.14}, WorkingPrecision -> 110] %t A201659 RealDigits[r] (* A201659 *) %o A201659 (PARI) a=9; c=0; solve(x=3, 3.14, a*x^2 + c - 1/sin(x)) \\ _G. C. Greubel_, Sep 11 2018 %Y A201659 Cf. A201564. %K A201659 nonn,cons %O A201659 1,1 %A A201659 _Clark Kimberling_, Dec 04 2011