This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A201675 #12 Feb 07 2025 16:44:07 %S A201675 3,1,2,6,7,6,3,3,5,4,8,1,7,8,4,3,9,5,8,3,2,4,7,1,0,5,4,3,0,4,1,3,9,3, %T A201675 5,0,0,8,6,9,5,6,0,6,7,8,0,4,2,4,0,6,1,3,9,9,3,3,0,3,2,1,0,4,5,3,3,0, %U A201675 3,9,5,9,0,7,3,7,1,4,3,9,0,9,5,1,1,5,5,1,5,2,7,8,9,8,4,2,3,6,0 %N A201675 Decimal expansion of greatest x satisfying 7*x^2 - 1 = csc(x) and 0<x<Pi. %C A201675 See A201564 for a guide to related sequences. The Mathematica program includes a graph. %H A201675 G. C. Greubel, <a href="/A201675/b201675.txt">Table of n, a(n) for n = 1..10000</a> %H A201675 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>. %e A201675 least: 0.62272709431369510379503993928652289013... %e A201675 greatest: 3.12676335481784395832471054304139350... %t A201675 a = 7; c = -1; %t A201675 f[x_] := a*x^2 + c; g[x_] := Csc[x] %t A201675 Plot[{f[x], g[x]}, {x, 0, Pi}, {AxesOrigin -> {0, 0}}] %t A201675 r = x /. FindRoot[f[x] == g[x], {x, .6, .7}, WorkingPrecision -> 110] %t A201675 RealDigits[r] (* A201674 *) %t A201675 r = x /. FindRoot[f[x] == g[x], {x, 3.0, 3.14}, WorkingPrecision -> 110] %t A201675 RealDigits[r] (* A201675 *) %o A201675 (PARI) a=7; c=-1; solve(x=3, 3.14, a*x^2 + c - 1/sin(x)) \\ _G. C. Greubel_, Sep 12 2018 %Y A201675 Cf. A201564. %K A201675 nonn,cons %O A201675 1,1 %A A201675 _Clark Kimberling_, Dec 04 2011