This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A201682 #12 Feb 07 2025 16:44:07 %S A201682 1,7,3,6,0,3,2,4,0,9,7,3,9,9,9,5,0,6,5,4,1,8,3,1,1,0,7,7,4,0,4,2,8,5, %T A201682 2,3,1,2,7,7,2,6,5,8,9,8,1,9,9,8,4,6,3,6,6,4,4,7,4,4,7,6,3,7,1,9,2,1, %U A201682 9,4,3,1,8,7,3,3,2,6,5,0,3,8,5,1,7,0,1,7,2,1,4,3,4,4,6,9,7,1,5 %N A201682 Decimal expansion of least x satisfying x^2 - 2 = csc(x) and 0<x<Pi. %C A201682 See A201564 for a guide to related sequences. The Mathematica program includes a graph. %H A201682 G. C. Greubel, <a href="/A201682/b201682.txt">Table of n, a(n) for n = 1..10000</a> %H A201682 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>. %e A201682 least: 1.7360324097399950654183110774042852312772... %e A201682 greatest: 2.9979969201816952606618233312541258876... %t A201682 a = 1; c = -2; %t A201682 f[x_] := a*x^2 + c; g[x_] := Csc[x] %t A201682 Plot[{f[x], g[x]}, {x, 0, Pi}, {AxesOrigin -> {0, 0}}] %t A201682 r = x /. FindRoot[f[x] == g[x], {x, 1.7, 1.8}, WorkingPrecision -> 110] %t A201682 RealDigits[r] (* A201682 *) %t A201682 r = x /. FindRoot[f[x] == g[x], {x, 2.9, 3.0}, WorkingPrecision -> 110] %t A201682 RealDigits[r] (* A201683 *) %o A201682 (PARI) a=1; c=-2; solve(x=1.5, 2, a*x^2 + c - 1/sin(x)) \\ _G. C. Greubel_, Sep 12 2018 %Y A201682 Cf. A201564. %K A201682 nonn,cons %O A201682 1,2 %A A201682 _Clark Kimberling_, Dec 04 2011