cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A201685 Triangular array read by rows. T(n,k) is the number of connected endofunctions on {1,2,...,n} that have exactly k nodes in the unique cycle of its digraph representation.

This page as a plain text file.
%I A201685 #34 Sep 08 2022 08:46:01
%S A201685 1,2,1,9,6,2,64,48,24,6,625,500,300,120,24,7776,6480,4320,2160,720,
%T A201685 120,117649,100842,72030,41160,17640,5040,720,2097152,1835008,1376256,
%U A201685 860160,430080,161280,40320,5040,43046721,38263752,29760696,19840464,11022480,4898880,1632960,362880,40320
%N A201685 Triangular array read by rows. T(n,k) is the number of connected endofunctions on {1,2,...,n} that have exactly k nodes in the unique cycle of its digraph representation.
%C A201685 Column k=1: A000169,
%C A201685 Column k=2: A053506,
%C A201685 Column k=3: A065513.
%C A201685 Row sums:   A001865.
%C A201685 T(n,n) = (n-1)!, T(n,n-1) = n!.
%C A201685 Sum_{k=1..n} T(n,k)*k = n^n. - _Geoffrey Critzer_, May 13 2013
%C A201685 From the asymptotic given by N-E. Fahssi in A001865, we see the expected size of the cycle grows as (2*n/Pi)^(1/2). - _Geoffrey Critzer_, May 13 2013
%C A201685 Central terms: A277168. - _Paul D. Hanna_, Oct 01 2016
%H A201685 Alois P. Heinz, <a href="/A201685/b201685.txt">Rows n = 1..141, flattened</a>
%F A201685 E.g.f.: log(1/(1-y*A(x))) where A(x) is the e.g.f. for A000169.
%F A201685 T(n,k) = binomial(n-1,k-1)*n^(n-k)*(k-1)!. - _Geoffrey Critzer_, May 13 2013
%e A201685 Triangle begins as:
%e A201685      1;
%e A201685      2,    1;
%e A201685      9,    6,    2;
%e A201685     64,   48,   24,    6;
%e A201685    625,  500,  300,  120,  24;
%e A201685   7776, 6480, 4320, 2160, 720, 120;
%p A201685 T:= (n, k)-> binomial(n-1, k-1)*n^(n-k)*(k-1)!:
%p A201685 seq(seq(T(n, k), k=1..n), n=1..12);  # _Alois P. Heinz_, Aug 14 2013
%t A201685 f[list_] := Select[list, # > 0 &]; t = Sum[n^(n - 1) x^n/n!, {n, 1, 20}]; Map[f, Drop[Range[0, 10]! CoefficientList[Series[Log[1/(1 - y t)], {x, 0, 10}], {x, y}], 1]] // Grid
%o A201685 (PARI) T(n,k) = binomial(n-1,k-1)*n^(n-k)*(k-1)!; \\ _G. C. Greubel_, Jan 08 2020
%o A201685 (Magma) [Binomial(n-1,k-1)*n^(n-k)*Factorial(k-1): k in [1..n], n in [1..12]]; // _G. C. Greubel_, Jan 08 2020
%o A201685 (Sage) [[binomial(n-1,k-1)*n^(n-k)*factorial(k-1) for k in (1..n)] for n in (1..12)] # _G. C. Greubel_, Jan 08 2020
%o A201685 (GAP) Flat(List([1..12], n-> List([1..n], k-> Binomial(n-1,k-1)*n^(n-k)*Factorial(k-1) ))); # _G. C. Greubel_, Jan 08 2020
%Y A201685 Cf. A000169, A001865, A053506, A065513, A277168.
%K A201685 nonn,tabl
%O A201685 1,2
%A A201685 _Geoffrey Critzer_, Dec 03 2011