A201695 Number of n X 3 0..2 arrays with rows and columns lexicographically nondecreasing read forwards and nonincreasing read backwards.
3, 18, 116, 395, 989, 2068, 3838, 6541, 10455, 15894, 23208, 32783, 45041, 60440, 79474, 102673, 130603, 163866, 203100, 248979, 302213, 363548, 433766, 513685, 604159, 706078, 820368, 947991, 1089945, 1247264, 1421018, 1612313, 1822291
Offset: 1
Keywords
Examples
Some solutions for n=4: ..1..2..2....0..0..1....0..2..2....0..2..2....1..1..2....0..0..2....0..0..2 ..1..2..2....0..2..0....2..0..1....1..1..2....1..2..1....0..2..0....0..1..0 ..2..1..2....0..2..0....2..0..1....1..2..0....2..0..1....2..0..0....2..0..0 ..2..2..0....2..0..0....2..1..0....2..0..0....2..1..0....2..0..0....2..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A201700.
Formula
Empirical: a(n) = (3/2)*n^4 + (4/3)*n^3 - 4*n^2 - (29/6)*n + 9.
Conjectures from Colin Barker, May 23 2018: (Start)
G.f.: x*(3 + 3*x + 56*x^2 - 35*x^3 + 9*x^4) / (1 - x)^5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n>5.
(End)
Comments