A201696 Number of n X 4 0..2 arrays with rows and columns lexicographically nondecreasing read forwards and nonincreasing read backwards.
3, 27, 395, 4998, 35390, 167625, 607919, 1826778, 4775228, 11211034, 24167306, 48600665, 92261185, 166831642, 289389192, 484248471, 785251265, 1238574341, 1906133765, 2869671064, 4235613920, 6140811719, 8759254221, 12309889872
Offset: 1
Keywords
Examples
Some solutions for n=3: ..0..1..1..2....0..1..1..2....0..1..1..1....0..1..2..2....0..1..2..2 ..1..0..0..2....2..1..1..0....2..0..0..0....0..2..0..0....0..2..1..2 ..2..2..2..0....2..1..1..0....2..0..0..0....1..0..0..0....2..1..1..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A201700.
Formula
Empirical: a(n) = (1/907200)*n^10 + (13/20160)*n^9 + (8321/120960)*n^8 + (97/105)*n^7 - (40969/5400)*n^6 + (22681/960)*n^5 - (11661313/362880)*n^4 - (388097/10080)*n^3 + (4320179/16800)*n^2 - (323861/840)*n + 185.
Conjectures from Colin Barker, May 23 2018: (Start)
G.f.: x*(3 - 6*x + 263*x^2 + 1643*x^3 - 1328*x^4 - 4426*x^5 + 5086*x^6 - 1972*x^7 + 1789*x^8 - 1233*x^9 + 185*x^10) / (1 - x)^11.
a(n) = 11*a(n-1) - 55*a(n-2) + 165*a(n-3) - 330*a(n-4) + 462*a(n-5) - 462*a(n-6) + 330*a(n-7) - 165*a(n-8) + 55*a(n-9) - 11*a(n-10) + a(n-11) for n>11.
(End)
Comments